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Abstract Model-based robustness testing requires precise
and complete behavioral, robustness modeling. For exam-
ple, state machines can be used to model software behavior
when hardware (e.g., sensors) breaks down and be fed to a
tool to automate test case generation. But robustness behav-
ior is a crosscutting behavior and, if modeled directly, often
results in large, complex state machines. These in practice
tend to be error prone and difficult to read and understand.
As a result, modeling robustness behavior in this way is
not scalable for complex industrial systems. To overcome
these problems, aspect-oriented modeling (AOM) can be
employed to model robustness behavior as aspects in the form
of state machines specifically designed to model robustness
behavior. In this paper, we present a RobUstness Model-
ing Methodology (RUMM) that allows modeling robustness
behavior as aspects. Our goal is to have a complete and prac-
tical methodology that covers all features of state machines
and aspect concepts necessary for model-based robustness
testing. At the core of RUMM is a UML profile (AspectSM)
that allows modeling UML state machine aspects as UML
state machines (aspect state machines). Such an approach,
relying on a standard and using the target notation as the
basis to model the aspects themselves, is expected to make
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1 Introduction

Modeling software functional behavior has always been
an important focus of the modeling community to support
many development activities such as model-based testing
(MBT) and automated code generation. Regarding model-
based testing, which is the specific focus on this paper, much
less attention has been given to modeling non-functional
behavior such that the testing of non-functional properties
(e.g., safety and robustness) can be automated. Though sev-
eral UML profiles have been proposed to address the model-
ing of non-functional properties (including the UML profile
for QoS and Fault Tolerance [1], the MARTE profile [2],
and UMLSec [3]), it is not yet clear whether they can fully
support test automation.

Our motivation here is to support model-based robust-
ness testing. An IEEE Standard [4] defines robustness as
“the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful envi-
ronment conditions”. A system should be robust enough to
handle the possible abnormal situations that can occur in
its operating environment and invalid inputs. For example,
using our industrial case study as an example, modeling such
robustness behavior of a videoconferencing system (VCS) is
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Fig. 1 An overview of RUMM

to model its behavior in the presence of hostile environment
conditions (regarding the network and other communicating
VCSs), such as high percentage of packet loss and high per-
centage of corrupt packets. The VCS should not crash, halt or
restart in the presence of, for instance, a high percentage of
packet loss. Furthermore, the VCS should continue to work
in a degraded mode, such as continuing the videoconference
with low audio and video quality. In the worst case, the VCS
should return to the most recent safe state instead of bluntly
stopping execution. Such behavior is very important for a
commercial VCS and must be tested systematically and auto-
matically to be scalable.

To automate such systematic testing, one can model the
system robustness behavior to such events and resort to
model-based testing (MBT). However, robustness behav-
ior is typically crosscutting many parts of the system func-
tional model and, as a result, modeling such behavior directly
within the functional models is not practical since it leads
to many redundancies and hence results in large, cluttered
models. To cope with this issue, we decided to adopt aspect-
oriented modeling (AOM) [5], which provides separation of
concerns (SoC) during design modeling. Crosscutting con-
cerns are modeled as aspect models and are woven into a
primary model (base model), modeling non-crosscutting
concerns. AOM can potentially offer several benefits such as:
(1) enhanced modularization, (2) easier evolution of models,
(3) increased reusability, (4) reduced modeling effort, and (5)
improved readability [5,6].

Our goal in this paper is to provide a complete solution
in terms of both aspect and state machine features neces-
sary for model-based robustness testing. Furthermore, we
want to minimize the effort involved in learning a new lan-

guage over standard UML and enable automated, model-
based testing. To achieve this, we present a RobUstness
Modeling Methodology (RUMM) to model robustness
behavior using AOM and assess it on an industrial case
study involving a commercial videoconferencing system.
Such studies are very few in the research literature and are
rarely run and reported in a satisfactory manner [7]. To the
knowledge of the authors, only a few industrial applications
of AOM have been reported to date [8–11] and had very dif-
ferent objectives than RUMM. An overview of RUMM is
shown in Fig. 1. The core of RUMM is the definition of a
UML state machine profile for AOM: AspectSM (shown as
a white artifact in Fig. 1 in RobustnessModeling). We lim-
ited our profile to UML state machines as follows: (1) They
are the main notation currently used for model-based test
case generation [12] and are particularly useful in control
and communication systems. (2) As it is often the case, our
industrial case study exhibits state-based behavior so that it is
natural to initially provide support for UML state machines.
The profile can, however, be extended to other UML dia-
grams in the future, following similar principles. We rely on
developing a profile instead of developing a domain-specific
language since, in our case study context as in many others,
minimizing extensions to UML is expected to ease practi-
cal adoption. More thorough discussions on this issue are
presented in Sect. 7. Modelers of functional aspects of the
system can be different from the ones specifying its robust-
ness behavior. The latter make use of AspectSM to model
aspect state machines.

Another important part of the RUMM is another UML
profile (RobustProfile) shown as a white artifact in Fig. 1,
based on the fault taxonomy defined by [13] and the IEEE
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standard classification for anomalies [14]. The profile is used
by a robustness modeler to develop aspect state machines
and is defined specifically to assist in defining test strategies
for robustness testing. In addition, the profile helps gener-
ating test scripts based on classes of faults modeled using
the profile. Once again, the profile is defined on UML state
machines, as they are the main focus of this paper. We follow
the widely accepted and used definitions in [13] for faults and
failures. A fault is an incorrect state of a system or its envi-
ronment in the presence of which the system cannot provide
a correct service. Such deviation from the correct service is
called a failure. A fault type is identified based on a fault
taxonomy (white artifact in Fig. 1), and the UML profile
MARTE is used to model it in a UML class diagram (Aspect
Class Diagram, dark gray artifact in Fig. 1). In a subsequent
step, aspect class diagrams are used to model actual faulty
behavior as aspect state machines (AspectStatemachines)
using both AspectSM and RobustProfile. Finally, robustness
models comprising aspect class diagrams and aspect state
machines are woven into functional models once again com-
posed of UML class diagrams and state machines. This is
performed using our weaver implemented in Kermeta [15],
and the woven state machines produced by the weaver can be
used in turn by a model-based testing tool, for instance the
TRUST tool [16] or QTronics [17], to generate executable
test cases. In our case, test cases are generated in Python,
which is used as a test script language by our industry part-
ner (Cisco, Norway). Note that this paper addresses only
robustness modeling, and details on test case generation and
execution are outside the scope of this paper.

The contributions of the paper can be summarized as fol-
lows: (1) A RobUstness Modeling Methodology (RUMM)
that enables the systematic modeling of robustness behav-
ior in a practical and scalable way. (2) a UML 2.0 profile
(RobustProfile), which is based on a fault taxonomy in [13]
and the IEEE standard classification for anomalies [14], to
model faults, recovery mechanisms, and failure states. (3)
The application of the MARTE profile in conjunction with
RobustProfile to model faulty environment conditions. (4)
A UML 2.0 profile (AspectSM) to support comprehensive
aspect modeling for UML 2.0 state machines and enable
automated robustness testing. AspectSM supports modeling
crosscutting on all features of UML 2.0 state machines and
supports all basic features of AOSD such as pointcuts, intro-
duction, joinpoints, and advice. (5) An empirical evaluation
and discussion of the benefits of modeling robustness behav-
ior of an industrial system using RUMM and AspectSM. (6)
Tool support, based on model transformations in Kermeta
[15], to automatically weave AspectSM aspects into base
state machines (modeling the core functional behavior of a
system).

The rest of the paper is organized as follows: Sect. 2 pro-
vides a case study and a running example that we use to

explain various concepts in RUMM. Section 3 provides an
overview of the RUMM methodology. Section 4 describes
the terminology, techniques, and tools that are required to
understand and apply RUMM, including a definition and jus-
tification of the AspectSM profile (Sect. 4.2) and details of
its corresponding weaver (Sect. 4.7). Section 5 demonstrates
the application of the profile using a very simplified ver-
sion of our industrial case study. Section 6 discusses the
benefits achieved when applying RUMM to one complete
subsystem of our industrial case study. Section 7 discusses
existing works that are directly related to the objectives
of RUMM. Finally, Sect. 8 reports on future work and
conclusions.

2 Case study and running example

Our case study is part of a project aiming at supporting auto-
mated, model-based robustness testing of a core subsystem
of a videoconference system (VCS) called Saturn [16]. The
core functionality to be modeled manages the sending and
receiving of multimedia streams. Audio and video signals are
sent through separate channels and there is also a possibility
of transmitting presentations in parallel with audio and video.
Presentations can be sent by only one conference participant
at a time and all others receive it. In this paper, to demonstrate
the applicability of RUMM, we focused on this particularly
important subsystem (Saturn) and left out the other func-
tionalities of the VCS. We selected this subsystem because
robustness testing is concerned with testing the behavior of
VCS in the presence of hostile environment situations, which
can only be tested when the VCS is in a conference call with
other systems and which is what Saturn manages. Saturn is
complex enough to demonstrate the applicability and use-
fulness of RUMM while still remaining manageable in the
context of a case study. To provide simple running examples
in the next sections, we modeled a reduced version of Saturn
where one can only establish calls and cannot start or stop pre-
sentations. From now onwards, we will refer to this simplified
Saturn model as S-Saturn to differentiate it from the complete
case study model used in Sect. 6 to discuss the benefits of
RUMM.

2.1 Functional models of S-Saturn

The functional model of S-Saturn consists of a class dia-
gram and a state machine. The class diagram of S-Saturn
is shown in Fig. 2 and is meant to capture information
about APIs and system (state) variables, which are required
to generate executable test cases and oracles in our appli-
cation context. Saturn’s API is modeled as a set of meth-
ods in the Saturn class such as dial() and callDisconnect().
In our case, the parameters of these methods are either
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Fig. 2 Conceptual model of the S-Saturn subsystem

Fig. 3 Base state machine for the S-Saturn subsystem

modeled as primitive data types (e.g., String) or as
Enumeration types (e.g., CallProtocol).The state variables
of the system are modeled as instance variables of classes
in the conceptual model. For example, two system variables
in the SystemUnit class are NumberOfActiveCalls and Max-
imumNumberOfCalls. NumberOfActiveCalls is an Integer
which determines the number of VCS that are currently in a
Saturn videoconference, whereas MaximumNumberOfCalls
determines the maximum number of simultaneous calls sup-
ported by Saturn.

The state machine modeling the nominal functionality of
S-Saturn, referred to as a base state machine, is shown in
Fig. 3. It consists of four simple states. From the Idle state,
invoking the dial() method of the Saturn class leads to the
Connected_1 state, which represents the behavior of the sys-
tem when there is a conference without any presentation with
one endpoint. As long as there exists one endpoint in the con-
ference and no presentation is transmitting, S-Saturn stays in
the Connected_1 state, and when S-Saturn dials to more end-
points, it transitions to the NotFull state until it connects to the
maximum number of endpoints it supports and transitions to
the Full state. Each simple state has an associated state invari-
ant based on the system variables modeled in the conceptual

model. For instance, the Idle state has the following state
invariant:

sel f.systemUnit.Number O f ActiveCalls = 0

and sel f.con f erence.PresentationMode = ‘of f ’

2.2 Robustness behavior

To explain various activities and concepts involved in
defining the profiles, we will use a crosscutting robustness
behavior named ‘MediaQualityRecovery’. This behavior is
related to the robustness behavior of a VCS in the case when
media quality falls below an acceptable media quality level
and tries to recover. The VCS should not crash when the
media quality falls below this acceptable level, but should
rather keep on operating at a lower quality level and try to
recover from this situation. In the worst case, the VCS should
clean up system resources and go back to the most recent safe
state, in which the VCS was exhibiting normal behavior. In
our current case study, an example of a safe state is the Idle
state. Such a robust behavior is very important in a commer-
cial VCS, as quality expectations are high regarding robust-
ness to media quality faults. Recall that the models above
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are greatly simplified and that, in Sect. 6, we provide results
from the complete case study and other important robustness
aspects that we modeled for Saturn.

3 Robustness modeling methodology

Our goal is to devise a solution to model robustness behavior,
which (1) is complete in terms of aspect and state machine
features, (2) minimizes the learning curve over standard mod-
eling skills, and (3) enables automated, model-based testing.
To achieve this, we defined a RobUstness Modeling Method-
ology (RUMM) to model robustness behavior using AOM.
Recall from Sect. 1 that we follow the standard definition
of robustness provided in the IEEE 610.12 standard [4].
Such robustness is considered very critical in many stan-
dards such as in the IEEE Standard Dictionary of Measures
of the Software Aspects of Dependability [4], the ISO’s Soft-
ware Quality Characteristics standard [18], and the Software
Assurance Standard [19] by NASA. The RUMM methodol-
ogy (Fig. 4) is suitable for systems, which implement sub-
stantial robustness behavior to deal with faulty situations in
the environment, such as communication and control sys-
tems. A1 and A2 activities are related to functional modeling,

whereas activities A3–A6 are related to modeling robust-
ness behavior. Activity A7 is automated and merges func-
tional (base state machines) and robustness (aspects) models
together into a complete model. Activities A1–A6 are related
to modeling functional and robustness behavior and are man-
ual. In this section, we will explain very briefly each activity.
Additional, detailed information will be provided in the next
sections, followed by the application of RUMM in an indus-
trial case study.

The first activity (A1) involves developing a conceptual
model [20] of an SUT using a UML 2.0 class diagram based
on the domain analysis of the SUT. In this activity, we model
different domain concepts of the SUT as classes and rela-
tionships between them, which are determined as the result
of domain analysis. In addition, we model state variables of
the SUT as attributes in the class diagram. We also model
public operations of the SUT (API) and external events in
the SUT environment as signal receptions. The conceptual
model is then used in activity A2 for developing a behavioral
model of the SUT as one or more UML state machines. Attri-
butes defined in the conceptual model are used for various
purposes such as defining state invariants and guards on tran-
sitions. The operations and signal receptions defined in the
conceptual model are used as triggers on transitions of state

Fig. 4 Methodology for robustness modeling (RUMM)
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machines. In model-based robustness testing, one of the most
important tasks is the identification and modeling of faults, in
the presence of which we must test the behavior of the SUT.
To systematically identify these faults, the development of
fault taxonomy is required (A3) and is provided in Sect. 4.1.
The application of the fault taxonomy to an industrial sys-
tem is reported in Sect. 5.3. Activity A4 requires modeling
different properties of the system’s environment, the viola-
tions of which lead to the various types of faults identified
from the fault taxonomy (A3). The guidelines for this pro-
cess are defined in Sect. 5.4. Activity A5 requires modeling
robustness behavior as aspect state machines. As described in
Sect. 4.4, this requires the use of the AspectSM profile. The
profile definition is provided in Sect. 4.2. The control flow
arrow from activity A5 to A4 depicts that multiple robustness
aspects can be modeled one after another. Once all robust-
ness aspects have been modeled, we may need to define the
order in which the aspects should be woven into the base state
machine developed in activity A2. Guidelines for modeling
the ordering of aspect state machines as a weaving-directive
state machine are presented in Sect. 4.6. Finally, activity A7
weaves aspect state machines with base state machines. For
this activity, we developed a tool using Kermeta [15], a well-
known model transformation environment. The details of the
tool are presented in Sect. 4.7, and the weaving algorithm is
detailed in Appendix B.

4 Concepts, techniques, and tools required for RUMM

This section describes the concepts, techniques, and tools
that are needed to apply RUMM. In addition, we provide
further definitions of the terminology employed as needed.

4.1 Definitions

This section provides basic definitions required to understand
the rest of the paper.

4.1.1 Faults and failures in the context of UML state
machines

While modeling robustness, we model faults in the behavior
of the operating environment of an SUT. Such behavior of the
environment may lead the SUT into abnormal situations. In
UML state machines, we model faults in the environment as
either signal events or change events, on one or more transi-
tions in the state machine of the SUT. Firing such transitions
may lead the SUT to a degraded state where the SUT tries
to recover from the fault while still providing some of the
required service in a degraded mode. If the SUT is success-
ful in recovering from the fault, it then goes back to a normal

mode of operation. Otherwise, it may go to a failure state or
the initial state.

4.1.2 Fault classification based on taxonomy

Many fault taxonomies are proposed in the literature; how-
ever, most of them are either specific to architectures, for
instance service-oriented architecture (SOA) [21,22] and
Component-based Systems [23], or to application domains
such as aeronautics and space [24]. We chose the widely
known and referenced fault taxonomy presented in [13]
because it is very comprehensive and generic, and thus can
be extended for specific needs as required in our case. For
instance, we extended the taxonomy to accommodate for
media quality faults, which are very important for a com-
mercial VCS. The fault taxonomy for elementary fault clas-
ses provided in [13] is modeled in Fig. 5 as a class diagram.
Dark gray-colored classes in Fig. 5 show the fault classes
we extended for our specific needs. The taxonomy states
that a fault can be categorized based on different views/per-
spectives such as those based on SystemBoundary or Dimen-
sion. Using SystemBoundary, faults can be classified into
either InternalFault or ExternalFault depending on where
they occur. Details on classes of faults are provided in [13].
Given our goal, we extended some fault classes in the fault
taxonomy to model faults which are specific to the VCS.
For instance, to provide a support for modeling media-
related faults, which are important for an industrial VCS,
we introduced a view RequirementType (Fig. 5) and defined
two fault classes: FunctionalFault and NonFunctionalFault.
We further classified NonFunctionalFault into MediaFault
(Fig. 5), with further subclasses Audio and Video. In addi-
tion, we extended ExternalFault, which comprises faults in
networks and external systems, into NetworkFault and Sys-
temFault subclasses. SystemFault corresponds to the faults
in one or more VCS communicating with the SUT. Since in
robustness testing the focus is always on modeling behav-
ior of an SUT in the presence of faults in its environment,
all fault classes in the taxonomy are valid from the per-
spective of other VCSs communicating with the SUT. For
instance, a SoftwareFault in a VCS communicating with the
SUT can have an effect on the latter’s behavior. We pro-
vide an example use of the taxonomy in Sect. 5.3 for our
case study.

4.2 The AspectSM profile

Using the AspectSM profile, we model each aspect as a UML
state machine with stereotypes (aspect state machine). The
modeling of aspect state machines is systematically derived
from a fault taxonomy (Fig. 5) categorizing different types
of faults (incorrect states [13]) in a system and its environ-
ment (such as communication medium and other systems).
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Fig. 5 High-level fault taxonomy

Such a modeling approach models each type of robustness
behavior separately from the state machines modeling nom-
inal functionality (base state machine) and hence results in
enhanced separation of concerns. Furthermore, our modeling
approach models crosscutting behaviors as separate aspect
state machines and hence reduce modeling effort when com-
pared with modeling robustness directly in combination with
nominal behavior. The readability of models is then improved
as robustness behavior that tends to be redundant when mod-
eled directly is clearly separated out and expressed once.
Following the general ideas proposed in [26,25], to model
aspects using the same notations as the base model, we used
UML state machines to model both aspect and base models,
which is expected to facilitate practical adoption. In industrial
applications of model-based testing, it is always desirable
to minimize the need to learn different notations to model
different testing concerns (such as security and robustness
concerns). Though profiles already exist in the literature that
allow modeling aspects as UML state machines [6,27–30],
we decided to define our own profile to address the three
following problems:

1. Crosscutting behavior can exist on any modeling ele-
ment in UML 2.0 state machines, but the existing pro-
files and approaches do not support all features, such
as state invariants and guards [6,27,30,31]. These are
however crucial in the context of model-based testing,
and in particular for automated test case generation [32].

2. Existing modeling approaches using profiles require, for
modeling aspect features (such as pointcut and advice),
to develop new diagrams that are not part of the UML 2.0
standard [29,33], thus making adoption in practical con-
texts more difficult. Indeed, such profiles require devel-
oping specific tool support for new diagrams and entails
training users on how to build them. As a result, in prac-
tice, the use of non-standard modeling languages is dis-
couraged.

3. Some of the existing approaches do not support all basic
features of aspect orientation such as Introduction.

More details and discussions on related work are provided in
Sect. 7.2
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Fig. 6 Conceptual domain model of the profile

Fig. 7 Constraint on Pointcut
Context Pointcut inv: 
      self.advice.oclIsKindOf(Before)->size()= 0 or  self.advice.oclIsKindOf(Before)->size()=1  
      and  self.advice.oclIsKindOf(Around)->size()=0 or  self.advice.oclIsKindOf(Around)->size()=1  
      and self.advice.oclIsKindOf(After)->size()=0 or  self.advice.oclIsKindOf(After)->size()=1 

The AspectSM profile is the core component of RUMM
because modeling robustness as aspect state machines is
achieved through standard UML extension mechanisms. This
profile was developed by augmenting many of the concepts
in existing UML state machine profiles for AOM (Sect. 7)
to achieve the specific goal of supporting automated, model-
based robustness testing. Although the AspectSM profile is
developed specifically for robustness testing, its application
to other purposes such as for security testing should be inves-
tigated. In this section, we provide a detailed description of
AspectSM.

A UML profile enables the extension of UML for differ-
ent domains and platforms, while avoiding any contradiction
with UML semantics. In [34], two main approaches for pro-
file creation are discussed. The first approach directly imple-
ments a profile by defining key concepts of a target domain,
such as what was done to define SysML [35]. The second
approach first creates a conceptual model outlining the key
concepts of a target domain followed by creating a profile for
the identified concepts. This latter approach has been used
for defining profiles such as the UML profile for Schedula-
bility, Performance, and Time specification (SPT) [36], the
QoS and Fault Tolerance specifications [1], and the UML
Testing Profile (UTP) [37].

We used the second approach to define the AspectSM pro-
file since it is more systematic as it separates the profile cre-
ation process into two stages. In the first stage, we develop
a conceptual model, which helps identify domain concepts
and their relationships. In the second stage, we identify the
mapping between the main concepts and UML modeling ele-
ments and define corresponding stereotypes on UML meta-
classes. Finally, the relationships between stereotypes are
obtained from the relationships that were identified between
the domain concepts in the first stage.

4.2.1 Domain view of the profile

The conceptual domain model for AspectSM is shown in
Fig. 6 as an MOF-based [38] metamodel. The conceptual

domain model defines aspect-oriented modeling
concepts.

An aspect describes a crosscutting behavior, which in
our context is the robustness behavior of a system, i.e., the
behavior of the system in the presence of faults in its envi-
ronment, such as packet loss and jitter for a network. Since a
network can experience packet loss at any time, it crosscuts
the SUT functional behavior. Since in our case study, like in
many systems with state-driven behavior, the behavior of the
system is modeled as UML 2.0 state machines, we also model
aspects as UML 2.0 state machines to facilitate adoption in
practice. Robustness behavior, for example the behavior of
an SUT in the presence of packet loss or corrupt packets, is
modeled using one or more state machines.

A joinpoint is a model element, which corresponds to a
pointcut where an advice (additional behavior) can be applied
[39]. All modeling elements in UML are possible joinpoints,
where an advice can be applied [5]. For UML state machines,
some examples of joinpoints include a state or a transition.

A pointcut selects one or more joinpoints with similar
properties, where advices can be applied. A pointcut can have
at most one before advice, one around advice, or one after
advice (Fig. 7). All pointcuts are expressed with the OCL
on the UML 2.0 metamodel. We decided to use the OCL to
query joinpoints since it is the standard to write constraints on
UML models and is also commonly used to query jointpoints
(modeling elements such as states and transitions). Also, sev-
eral OCL evaluators are currently available that can be used
to evaluate OCL expressions such as the IBM OCL evaluator
[40], OCLE 2.0 [41] and EyeOCL [42]. Furthermore, writ-
ing pointcuts as OCL expressions do not require a modeler to
learn a notation that is not part of the UML standard. In the
literature, several alternatives are proposed to write point-
cuts [6,27–29,33], but all of them either rely on languages
(mostly based on wildcard characters to select joinpoints, for
instance, ‘*’ to select all joinpoints) or diagrammatic nota-
tions, which are not standard, thus forcing modelers to learn
and apply new notations or languages. Using the OCL, we
can write precise pointcuts to select jointpoints with similar
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Context uml::Transition 

       self->select(trigger trigger.event.oclIsKindOf(SignalEvent))

Fig. 8 A pointcut in OCL selecting all transitions with signal events

properties. We do so by selecting modeling elements (joint-
points) based on the properties of UML metaclasses. This
further gives us the flexibility to specify pointcuts of varying
complexities. For instance, we can specify a very complex
pointcut based on all properties of a UML metaclass, e.g.,
a pointcut on the Transition metaclass, selecting a subset of
transitions in a base state machine for which all properties of
the Transition metaclass are the same. On the other hand, we
can also specify a simple pointcut based on a small subset of
properties of a UML metaclass. For example, a pointcut on
the Transition metaclass selecting all those transitions from a
base state machine, which have the same guards, though other
properties such as triggers or effects can be different. In UML
state machines, states and transitions are the most impor-
tant modeling elements and all other elements are contained
within them such as state invariants in states, and guards and
actions in transitions. Therefore, pointcuts are defined in the
context of the UML metaclass Vertex, to query states and
apply advices on states and its composing elements such as
state invariants and do, entry, and exit activities. Similarly,
pointcuts are also defined in the context of the UML meta-
class Transition to query transitions, and advices are applied
on transitions and its containing elements such as Guard and
Actions. The attributes for the Vertex and Transition meta-
classes can be obtained from the UML specifications [43].
For example, a pointcut may select all transitions of a state
machine, which have triggers with signal events. This point-
cut, defined in Fig. 8, is written as an OCL expression on
attributes of the UML metaclass Transition and selects all
transitions that have triggers with signal events on them.

An advice is an additional behavior added at joinpoint(s)
selected by a pointcut. This behavior can be added as OCL
constraints or in the form of state machine modeling elements
such as a guard or an effect. As most of the concepts in AOM
are inspired from aspect-oriented programming (AOP) lan-
guages such as AspectJ [44], in a similar way in AOM, an
advice can be of type before, after, or around. A before advice
is applied before joinpoint(s), an after advice is applied after
joinpoint(s), whereas an around advice replaces joinpoint(s).
For example, introducing guards on all transitions of a state
machine that have signal events as triggers is an example of a
before advice on transitions. Table 1 summarizes the seman-
tics of each type of advice for each UML 2.0 state machine
modeling element. Examples for advice on all UML 2.0 state
machine modeling elements are provided in [45].

An introduction is similar to the inter-type declaration
concept in AspectJ [44] and is used in many AOM approaches

[33,46–48] to introduce new modeling elements in a base
model. In a similar fashion, we use introduction in our con-
text to introduce new modeling elements in a UML state
machine, e.g., a new state or a transition. In our context,
we mostly use introduction to introduce transitions in a base
state machine, which correspond to faults in the environment
(Sect. 4.1.1). We also use introduction to introduce new states
in a base state machine, which are related to a robustness
behavior such as the state of a system which is operating
with degraded performance (Sect. 4.1.1).

4.2.2 UML representation

In this section, we provide details on the AspectSM profile,
such as details on stereotypes and their attributes.

Profile diagrams: Profile diagrams for AspectSM
are presented in Figs. 9, 10, and 11. Profile diagrams
show extension relationships between stereotype classes
(denoted « stereotype ») and UML metaclasses (denoted
« metaclass »), i.e., relationships showing which stereo-
types are applied to which UML metaclasses (extension
relationship). For example, Fig. 10 shows the Introduction
stereotype applied to Transition, Behavior, Trigger, Con-
straint, and State metaclasses. These diagrams also show
relationships between stereotype classes such as associa-
tions and generalizations. For instance, in Fig. 11, Before,
After, and Around metaclasses are inherited from the Advice
metaclass. To decrease the complexity of profile diagrams,
we have not shown associations between stereotype clas-
ses. However, associations of stereotype classes are listed
in Table 2. In addition, Table 2 provides information about
extensions and generalizations. The extensions column in
Table 2 shows which UML metaclasses a particular ste-
reotype is applied to. For example, the Aspect stereotype
is applied to the uml::StateMachine metaclass in row 2 of
Table 2. The generalizations column illustrates the inheri-
tance relationship between stereotype classes. For example,
in row 5 of Table 2, the Before stereotype is inherited from
the Advice stereotype.

Profile elements description: We now describe each profile
element. Extensions, generalizations, and associations are
shown in Table 3. The extension relationship tells on which
metaclasses of UML a stereotype is applied. For instance,
in Table 2, the « Aspect » stereotype has an extension rela-
tionship with the UML metaclass StateMachine. This means
that the « Aspect » stereotype can be applied to a UML state
machine. All stereotypes except « Aspect » are applied to all
modeling elements related to UML state machines, though
in Table 3 we list only the key metaclasses of UML state
machines.

Attributes associated with the « Aspect » stereotype are
shown in Table 4. Attributes associated with the « Pointcut »,

« Bef ore », « A f ter », and « Around » stereotypes are
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Fig. 9 « Aspect » stereotype applied to StateMachine metaclass (left) and « Pointcut » stereotype applied to various metaclasses (right)

Fig. 10 The « I ntroduction » stereotype applied to various metaclasses

Fig. 11 The « Advice » stereotype applied to various metaclasses
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Table 1 Definition of before, around, and after advice

State machine modeling element Before advice Around advice After advice

State Adding an OCL constraint that
will be evaluated before entry
to one or more states selected
by a pointcut

Replacing one or more states
selected by a pointcut with a
new state

Adding an OCL constraint that
will be evaluated on leaving
one or more states selected by
a pointcut

Transition Adding a guard to one or more
transitions selected by a
pointcut. If a guard already
exists, the additional
constraint is conjuncted to the
existing guard

Replacing one or more
transitions selected by a
pointcut with a new transition

Adding an effect with one or
more actions to one or more
transitions selected by a
pointcut

Trigger Not applicable Replacing one or more triggers
on transitions selected by a
pointcut with new triggers

Not applicable

Effect Adding a new behavior to the
effect

Replacing one or more effects
on transitions selected by a
pointcut with a new effect

Same as Before advice

Guard and state invariant Add an additional constraint
(conjunct) to the guards (or
state invariants) selected by a
pointcut

Replacing one or more guards
on transitions (or state
invariants) selected by a
pointcut with a new guard (or
a state invariant)

Same as Before advice

Do, entry, and exit activities of a state Adding a behavior to the
activities selected by a
pointcut

Replacing one or more
activities in states selected by
a pointcut with a new activity

Same as Before advice

Table 2 Extensions, generalizations, and associations of each stereotype

Stereotype Extensions Generalizations Associations (association
name[Cardinality]: Target
stereotype class)

Aspect uml::StateMachine None None

Pointcut uml::State, uml::Transition,
uml::Trigger, uml::Constraint,
uml::Behavior

None beforeAdvice[0..1]:Before,
afterAdvice[0..1]:After,
aroundAdvice[0..1]:Around,
introduction[0..*]:Introduction

Advice Same as for Pointcut None pointcut[1]:Pointcut

Before Same as for Advice Advice Same as for Advice

After Same as for Advice Advice Same as for Advice

Around Same as for Advice Advice Same as for Advice

Introduction Same as for Advice None pointcut[1]:Pointcut

shown in Tables 3 and 5. When applying these stereotypes,
attributes must be supplied in accordance to the description
in these tables. Examples are presented in [45].

4.2.3 Example of an application of AspectSM

We present next a small example of the application of
AspectSM. On the MediaQualityRecovery aspect state
machine in Fig. 12, the « Aspect » stereotype is described
in a top-left note (labeled as “1”) in the upper left part of
Fig. 12. This aspect consists of one pointcut on a state:

SelectedStates, in which attribute values are described in the
note labeled as “2”. The SelectStatesPointcut applied to the
SelectedStates state selects all states of the base state machine
(Fig. 3) except for the Idle state. Whenever media quality (in
this case, audioQuality) falls below the acceptable level in
any of the states selected by the SelectStatesPointcut point-
cut, the system goes to the RecoveryMode state, which is
stereotyped as « I ntroduction » indicating that this state
will be introduced in the base state machine (Fig. 3). This is
shown as a transition with the « I ntroduction » stereotypes
indicating this transition will be introduced in the base state
machine.

123



644 S. Ali et al.

Table 3 Attributes defined for
the « Pointcut » stereotype

Name Type Description

Name[1] String Name of the pointcut

Type[1] SelectionType SelectionType is an enumeration which has All, Subset,
and One enumeration literals. The All literal means
that all modeling elements of a particular type will be
selected. For instance, if a pointcut of the type All is
specified on a state in an aspect, this means that the
pointcut will select all states of the base state machine.
When the type of a pointcut is specified as All, there is
no need to specify selectionConstraint. When the type
of a pointcut is specified as One, the name of the
modeling element is specified as selectionConstraint.
In the case of a pointcut of type Subset, an OCL
constraint is specified at the UML metamodel level to
select a subset of modeling elements

SelectionConstraint String An OCL constraint on the UML 2.0 metamodel level to
select model elements. For instance, a pointcut may
select all transitions of a state machine which have
triggers with signal events. (See for Fig. 8 an example)

BeforeAdvice[0..1] String A before advice associated with the pointcut

AfterAdvice[0..1] String An after advice associated with the pointcut

AroundAdvice[0..1] String An around advice associated with the pointcut

Table 4 Attributes defined for
the « Aspect » stereotype Name Type Description

Name[1] String Name of the aspect

BaseStateMachine[1..*] uml::StateMachine Base state machines on which an aspect is applied

Table 5 Attributes defined for
the stereotypes related to advice Name Type Description

Name[1] String Name of the advice

Constraint[0..1] String A constraint in OCL at the model level as a before, after, or around advice

Fig. 12 An example for the application of AspectSM
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Table 6 Extensions and
generalizations of each
stereotype for FMProfile

Stereotype Extensions Generalizations

Fault uml::Transition, uml::Trigger, uml::Event None

DevelopmentFault No Direct Extensions Fault

OperationalFault No Direct Extensions Fault

InternalFault No Direct Extensions Fault

ExternalFault No Direct Extensions Fault

NaturalFault No Direct Extensions Fault

HumanMadeFault No Direct Extensions Fault

HardwareFault No Direct Extensions Fault

SoftwareFault No Direct Extensions Fault

MaliciousFault No Direct Extensions Fault

Non-MaliciousFault No Direct Extensions Fault

DeliberateFault No Direct Extensions Fault

NonDeliberateFault No Direct Extensions Fault

AccidentalFault No Direct Extensions Fault

IncompetenceFault No Direct Extensions Fault

PermanentFault No Direct Extensions Fault

TransientFault No Direct Extensions Fault

FunctionalFault No Direct Extensions Fault

NonFunctionalFault No Direct Extensions Fault

NetworkFault No Direct Extensions ExternalFault

SystemFault No Direct Extensions ExternalFault

MediaFault No Direct Extensions NonFunctionalFault

AudioFault No Direct Extensions MediaFault

VideoFault No Direct Extensions MediaFault

Table 7 Extensions and
generalizations of each
stereotype for FRProfile

Stereotype Extensions Generalizations

RecoveryMechanism uml::Vertex None

Forward No Direct Extensions RecoveryMechanism

Backward No Direct Extensions RecoveryMechanism

SystemState uml::Vertex None

Initial No Direct Extensions SystemState

Final No Direct Extensions SystemState

Error No Direct Extensions SystemState

Degraded No Direct Extensions SystemState

Normal No Direct Extensions SystemState

4.3 RobustProfile

To help with the definition of robustness test strategies, we
defined a UML profile RobustProfile to model faults and
their properties. In addition, the profile supports the mod-
eling of recovery mechanisms when a fault has occurred
and the modeling of states a system can transition to when

it has recovered. The profile has two sub-profiles: the first
sub profile, FMProfile, deals with modeling faults and their
attributes. The second sub-profile, FRProfile, deals with
modeling recovery mechanisms and states of a system after
recovery from a failure. Below, we provide details on the
definition of these sub-profiles. We reused all the con-
cepts presented in [13] and in addition added a few more
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Fig. 13 Profile diagram for FMProfile

concepts presented in Sect. 4.1.2. In addition, we reused
all the concepts from the IEEE standard on the classifica-
tion of software anomalies as defined in [14]. All these con-
cepts from the IEEE standard were captured in a UML pro-
file so that the standard can be used in combination with
UML models. The newly introduced concepts are italicized in
Tables 6 and 7.

4.3.1 Fault Modeling Profile (FMProfile)

We used the same procedure to define FMProfile as that for
AspectSM (Sect. 4.2). The domain view for FMProfile is the
same as the fault taxonomy shown in Fig. 5 [13]. Below, we
provide a UML representation of FMProfile, which includes
profile diagrams and details on stereotypes and their attri-
butes.

Figure 13 shows a part of the profile diagram for FMPro-
file that is related to the abstract « Fault » stereotype class,
which corresponds to the Fault class in Fig. 5. We show
different attributes of « Fault » and also show its exten-
sion relationships to UML metaclasses. Additional infor-
mation about FMProfile is summarized in Table 6. The
« Fault » stereotype is applied to the metaclasses Transi-
tion, Trigger, and Event because each fault in our case occurs
when an event associated to trigger on a transition is fired
(see Sect. 4.1). Furthermore, according to UML semantics
[43], a transition can have multiple triggers, and each trig-
ger can model different faults belonging to the same super
class. For instance, a transition can model multiple exter-

nal faults (ExternalFault in Fig. 5), and one trigger on the
transition can model one fault from NetworkFault, while the
other trigger can model one fault from SystemFault. This
is the reason that the « Fault » stereotype class has an
extension relationship with the Trigger metaclass. The attri-
butes of « Fault » are obtained from the IEEE Standard
in [14] where more details can be found on each attribute.
Based on the values of these attributes, test strategies can
be devised. For instance, the transitions that are stereotyped
with « Fault » or any of its sub-stereotype classes with
value High for the severity attribute could be given priority
over other transitions modeling faults with lower severity.
In addition, complex test strategies can be defined to test the
robustness of an SUT in the combined presence of faults that
belong to different fault classes. For example, a test strategy
can be devised that can test the behavior of an SUT in the
presence of one media fault and one network fault at the same
time. We also defined stereotypes for all other classes shown
in the taxonomy and provide detailed information about these
stereotypes in Table 6. All stereotypes inherit attributes from
« Fault ».

This profile also assists in test script generation. For
instance, different stereotypes can indicate for which entity
(for instance, network or other systems) in the environ-
ment, test scripts are to be generated. For example, the
« Network Fault » stereotype indicates that test scripts
will be generated for a network emulator and the test
scripts will emulate a particular fault in the emulator. The
« MediaFault » stereotype indicates that test scripts will be
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Fig. 14 Domain view of FRProfile

Fig. 15 Profile diagram for FRProfile

generated to introduce media faults in the VCS that commu-
nicates with the SUT. It is important to distinguish between
faults for different entities in the environment because dif-
ferent scripting languages are normally used to control these
entities. In our case study, a proprietary scripting language
is used for the SUT and other VCS communicating with it,
whereas Python is used to control a proprietary network emu-
lator used by our industry partner.

4.3.2 Fault Recovery Profile (FRProfile)

FRProfile deals with modeling recovery mechanisms asso-
ciated with the occurrence of a fault. The domain view of
FRProfile is shown in Fig. 14. It consists of two main parts.
The first part describes recovery mechanisms such as For-
ward and Backward [13]. The second part deals with the
state of the system after a recovery mechanism is executed,
which could be Initial, Final, Failure, or a Degraded state
[13].

A part of the profile diagram for FRProfile is shown in
Fig. 15. Both recovery mechanisms and systems states refer
to states in the SUT state machines and we therefore applied
stereotypes « RecoveryMechanism » and « SystemState »
on metaclass Vertex. In addition, we defined stereotypes for
other classes shown in the domain view of the profile such
as « Forward » and « Degraded ». These stereotypes
inherit attributes from their corresponding super classes, e.g.,
« Degraded » inherit attributes from « SystemState ».
Details on stereotypes are shown in Table 7.

4.3.3 Example of an application of RobustProfile

This section provides a small example of the application
of RobustProfile in Fig. 16. A change event when(notsel f.
audioQuali t y < audioQuali t yT hreshold) is fired from
SelectedStates (stereotyped as « Normal » from RobustPro-
file indicating that it is a normal state) when the audio qual-
ity in a videoconference becomes lower than the allowed
threshold of audio quality. This change event is stereotyped
as « AudioFault » indicating that it is an audio fault (see the
comment labeled C1) and its attribute values are provided in
the note labeled as “1”. For instance, the effect attribute has
value Effect::Performance indicating that this fault affects the
performance of the system. Recall that the effect attribute is
defined based on the IEEE standard defined in [14]. The Re-
coveryMode state in Fig. 16 is stereotyped as « Degraded »
from RobustProfile indicating that in this state the system
functions with degraded performance.

4.4 Guidelines to model properties of an environment based
on the fault taxonomy

Figure 17 shows a set of guidelines to model properties of
the operating environment of an SUT in a UML class dia-
gram, violations of which lead to faults in the environment.
These properties are modeled based on a fault taxonomy
such as the one presented in Sect. 4.1.2. Faults related to the
environment are mostly violations of non-functional proper-
ties (NFP) such as media properties and network properties.
UML does not directly support modeling NFP; therefore, we
used part of the MARTE profile for modeling such proper-
ties [2]. The MARTE profile is an extension for UML 2.0 that
allows modeling real-time and embedded systems. MAR-
TE provides a generic framework to model NFP on UML
models. Moreover, MARTE provides a model library that
provides NFP data types for defining various NFP proper-
ties and specific applications. MARTE also provides mecha-
nisms to extend the model library to either extend the existing
NFP data types or define entirely new NFP types.

Now, we present an example to use the above guidelines
(Fig. 17) to model a class diagram, which captures the prop-
erties of the environment. Figure 18 shows a partial class
diagram of the MediaQualityRecovery robustness behavior
(Sect. 2.2). For this robustness behavior, we identify that
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Fig. 16 Application of RobustProfile

1. For each fault class indentified in the taxonomy, model one or more faults belonging to the class. 
2. For each fault of a fault class, define an attribute in the aspect class representing the property whose violation leads 

to the particular fault. The type of the property can be defined as: 
a. Using UML standard primitive data types such as Integer, Boolean, etc. 
b. Using the NFP_Types defined by MARTE such as NFP_Percentage 
c. Defining a new NFP_Type using the MARTE’s extensibility mechanism to define new NFPs.   

Fig. 17 Guidelines to model faults in aspect class diagram

Fig. 18 An example of modeling a property of environment

the Video fault class from the fault taxonomy (Fig. 5) is
relevant. For this fault class, video frame loss in incoming
video streams to a VCS is important for robustness testing of
the VCS. To model video frame loss, we model a property
named videoFrameLoss in the MediaQualityRecovery class
shown in Fig. 18. The videoFrameLoss property is modeled
as NFP_Percentage defined in MARTE. The property holds
the percentage of video frame loss in incoming video streams
to the VCS.

4.5 Aspect state machine

An aspect state machine is a standard UML state machine
with stereotypes from the AspectSM profile. The complete
definition of an aspect state machine follows the template
shown in Fig. 19.

4.6 Template for modeling weaving-directive state machine

In this paper, a robustness behavior, such as the behavior of an
SUT in the presence of network faults or faults in incoming
media streams to the SUT, is modeled using one or more
related aspects. Each of these aspects is modeled as a separate
aspect state machine. Aspect state machines should be woven
into a base state machine in a specific order to ensure that the

woven state machine is complete and correct. To achieve this,
an ordering must be defined by a modeler/tester who instructs
the weaver about the ordering of aspect state machines. This
is modeled as a state machine (denoted weaving-directive
state machine), containing all aspect state machines as sub-
machine states ordered using UML state machine’s control
structure features such as decision, join, and fork. If the
ordering does not matter, then a modeler/tester is free to spec-
ify any order. The template for the complete definition of a
weaving-directive state machine is shown in Fig. 20.

4.7 Weaver

The aspect state machines are woven into the base state
machine by a weaver, which reads the base state machine,
aspect state machines, and a weaving-directive state machine,
and produces a woven state machine. The weaving algo-
rithm is shown in Fig. 31 in Appendix B and is based on
the same weaving approach advocated in [25]. We devel-
oped a weaver for AspectSM by using Kermeta [15], which
is a metamodeling language [15] that allows manipulating
models by defining transformation rules at the metamodel
level. We do not implement any explicit model validation,
but rely on Kermeta’s model validation, which partially pre-
vents violations of UML semantics. Kermeta conforms to
OMG’s metamodeling language Essential Meta Object Facil-
ity (EMOF) and Ecore [38]. Figure 21 shows the architec-
ture of the weaver by using transformations in Kermeta to
weave one or more aspect state machines into a base state
machine. The AspectSM profile is defined on the UML 2.0
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An aspect state machine A is a UML 2.0 state machine stereotyped as <<Aspect>> consisting of the following UML 2.0 

state machine elements: 

1. I: An initial state 
2. F: A set of one or more final states 
3. S: A set of states, each of one of the following types  

a. A state s in S can be a new state to be introduced in the base model (stereotyped as 
<<Introduction>>)  

b. A state s in S can be a pointcut selecting one, a subset, or all states of a base state machine 
(stereotyped as <<Pointcut>>) 

c. A state s in S without any stereotype can be a state that has one or more new elements introduced 
(stereotyped <<Introduction>>) or as pointcuts (stereotyped as <<Pointcut>>) of the type state 
invariant, do, entry, or exit activity 

4. T: A set of transitions connecting states in the set S, each transition of one of the following types
a. A transition from an initial state to any type of state described in item 3, which doesn’t have any 

trigger, guard, or effect 
b. A set of transitions from any state (except from the initial state) to the final state 
c. A transition t in T can be a new transition to be introduced in the base model (stereotyped as 

<<Introduction>>). This type of transition can exist on the following pairs of stereotyped states: 
i. Between a state stereotyped as <<Introduction>> and a state stereotyped as 

<<Pointcut>>
ii. Between two states stereotyped as <<Introduction>>

iii. Between two states stereotyped as <<Pointcut>>
d. A transition t in T is a pointcut selecting one, a subset, or all transitions of a base state machine 

(stereotyped as <<Pointcut>>). This transition can exist on the following pairs of states: 
i. Between a state stereotyped as <<Introduction>> and a state stereotyped as 

<<Pointcut>>
ii. Between two states stereotyped as <<Introduction>>

iii. Between two states stereotyped as <<Pointcut>>
e. A transition t in T can be the transition without any stereotype that has any contained element such as 

a guard, a set of triggers, and an effect as a new element introduced (stereotyped as 
<<Introduction>>) or as a pointcut stereotyped as <<Pointcut>> . This transition can only exist 
between a pair of states stereotyped as <<Pointcut>>

Fig. 19 Definition of an aspect state machine

A weaving directive state machine W is a UML 2.0 state machine having the following modeling elements: 

1. An initial state I
2. A set of final states F
3. A set of submachine states S, where each submachine state refers to an aspect state machine 
4. A set of transitions T that can be of any of the following types:   

a. A transition from an initial state to a submachine state, which doesn’t have any trigger, guard, or effect, but can 
have a name. 

b. A set of transitions from submachine states (except from the initial state) to the final state.  
c. A set of transitions T connecting submachine states S using UML 2.0 state machine’s features such as decision, 

join, and fork to show the order in which the submachine states (aspects) will be woven into the base state 
machine. For instance, in a very simple scenario, if there is an outgoing transition from submachine state S to S’, 
then S will be woven before S’. 

Fig. 20 Definition of a weaving directive state machine

metamodel. An aspect state machine is defined as a UML 2.0
state machine by applying the AspectSM profile. A base state
machine is a standard UML 2.0 state machine. Transforma-
tions rules in Kermeta are defined on the UML 2.0 metamodel
and the AspectSM profile. Finally, the Kermeta engine uses
the transformation rules that read an aspect state machine and
the base state machine and weaves the aspect state machine
into the base state machine. The Kermeta engine then pro-
duces a woven state machine, which is again an instance of
the UML 2.0 metamodel, since the woven state machine is a
standard UML 2.0 state machine. The woven state machines
can then be used as input for automated model-based testing
tools such as Conformiq Qtronic [17] and Smartesting Test

Designer [49]. The weaver is fully automated and does not
require any additional inputs from the user apart from aspect
state machines and a base state machine.

The weaver is developed to support automated, model-
based robustness testing, and thus aspect state machines are
woven into the base state machine, which can be used for
test case generation. Currently, our approach and its weaver
do not support modeling and weaving interactions [6] that
may occur between different aspects and may lead to con-
flicts between aspects during weaving. On the other hand,
our weaver does support to a limited extent the handling
of aspect conflicts. In [50], four classes of aspect conflicts
are discussed: conflicts due to crosscutting specification,
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Fig. 21 Aspect weaver
implemented in Kermeta

aspect–aspect conflicts, aspect–base conflicts, and concern–
concern conflicts. In our application context, i.e., robust-
ness modeling and testing, the most relevant conflicts are
aspect–aspect conflicts, which are related to handling con-
flicts between aspects. One of the most important aspect–
aspect conflicts is the ordering conflict, which is related to
the order in which aspect state machines should be woven
into a base state machine. Ordering conflict is most relevant
in our context since, for testing purposes, we focus on mod-
eling, weaving, and testing one or more related aspects at a
time. We specify the ordering between aspect state machines
in a UML state machine containing all aspect state machines
as submachine states, ordered using state machine control
structure features: decision, join, and fork.

The algorithm implemented in the weaver is presented in
Appendix B. For the current application, we do not foresee
the need to define other interactions/conflicts; however, in
the future we plan to apply RUMM to other case studies and
as required we will further improve the process. For testing
purposes, one first has to focus on testing one concern at
a time and may eventually at a later stage test several con-
cerns together. For robustness testing, at this stage of the
work, we weave faulty behavior of the environment (e.g.,
network) one concern at a time, as the goal is to test robust-
ness behavior one concern at a time in order to facilitate
debugging.

5 Application of RUMM to our simplified industrial
case study

In this section, we illustrate the different activities in RUMM
using the simplified version of our industrial case study
(S-Saturn).

5.1 Activity A1: develop a conceptual model of a system

This activity involves developing a conceptual model [20]
of a system using UML 2.0 class diagram based on the
domain analysis of the system. As we discussed in Sect. 2, the
Saturn subsystem deals with establishing videoconferencing
calls, disconnecting calls, and starting/stopping presentation.
In Sect. 2, Fig. 2 shows what we refer to as a ‘conceptual
model’ for the system being modeled, which is here S-Saturn.

5.2 Activity A2: develop a behavioral model of the system
as UML state machines

This activity models the nominal system behavior using
UML 2.0 state machines, as illustrated for S-Saturn in Fig. 3,
Sect. 2. This behavioral model is referred to as the ‘base state
machine’ since all aspect state machines are woven into this
state machine.

5.3 Activity A3: identify relevant faults from fault
taxonomy

A VCS should be robust against possible faults arising in its
environment, which includes users, the network, and other
videoconferencing systems. A user interacts with the VCS
and sends different commands such as starting a videocon-
ferencing, stopping a videoconference, and starting a pre-
sentation. All the interactions of the VCS with other VCSs
take place through the network. Therefore, the VCS should
be robust against faults in the network and other VCSs
communicating with it.

In our case study, we modeled Media faults in the VCSs
communicating with the SUT, which are the ones that are
related to quality of media such as audio, video, and their
synchronization. From Fig. 5, we see subclasses of Media
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Table 8 Media faults and their description

Fault class Fault instance Fault description

Audio Fault No audio This fault removes audio from a videoconference

Loss of audio frames This fault introduces loss in audio frames

Low audio quality This fault reduces audio quality in a videoconference

Noise in audio This fault introduces noise in audio during a videoconference

Echo in audio This fault introduces echo in audio

Mixing of multiple audio This fault mixes multiple audio during a videoconference

Video Fault No video This fault removes video from a videoconference

Loss in video frames This fault introduces loss in video frames

Low video quality This fault reduces video quality in a videoconference

Media Fault Synchronization mismatch between audio and video This fault loses synchronization between audio and
video in a videoconference

Table 9 Network faults and
their description Fault Description of the fault

Packet Loss This fault introduces network packet loss during a videoconference

Jitter This fault introduces delays in the packet during a videoconference

Illegal H323 packet This fault introduces illegal/malformed H323 packets in a H323 videoconference

Illegal SIP packet This fault introduces illegal/malformed SIP packets in a SIP videoconference

No network connection This fault shut downs the network

Low bandwidth This fault reduces the bandwidth of the network to less than the bandwidth
required by a videoconference

Fig. 22 Class diagram for
media quality attributes

faults which are Audio Faults and Video Faults. Table 8 pro-
vides a description of Media faults that are relevant to our
case study.

In addition, network faults (NetworkFault, see Fig. 5) are
important for a VCS. Several types of faulty situations can
happen in the network that must be dealt by the VCS. We
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show network faults that are relevant to our case study in
Table 9.

5.4 Activity A4: develop a class diagram for a robustness
aspect

As advocated by the aspect-oriented paradigm, crosscut-
ting concerns (functional or non-functional) [29] must be
modeled as aspects. Activities A3 and A4 model aspects
of the robustness behavior of the system using aspect state
machines and aspect class diagrams. To do so, we use the
AspectSM profile using the existing UML state machine
notation, as presented in Sect. 4.2.

As an example, we demonstrate how to model two rep-
resentative crosscutting behaviors on S-Saturn. The first one
models the behavior that checks the quality of media (audio
and video) during a videoconference and in case the qual-
ity falls below a threshold value, specific procedures try to
recover an acceptable quality. This is achieved by modeling
three aspects: (1) First aspect updates state invariants of all
states with audio quality attributes. (2) The second aspect
updates state invariants of all states with video quality attri-
butes. (3) The third aspect models the behavior that checks the
quality of media (audio and video) during a videoconference
and, in case the quality falls below the threshold value, trig-
gers the above-mentioned recovery procedures (MediaRe-
coveryAspect). Such behavior is redundant in various states
and hence is a crosscutting behavior. The second crosscutting
behavior example factors out constraints on input parame-
ters of a call event as an aspect, which are also scattered
across many transitions in the base state machine. Details
about the modeling of these two aspects are presented in
Appendix A.

Each aspect state machine has an associated class diagram
(aspect class diagram), which is an augmentation of the con-
ceptual model of the Saturn subsystem shown in Fig. 2. This
class diagram models the information about different kinds of
faults in the fault taxonomy, such as audio and video related
faults. Guidelines for such modeling based on a fault tax-
onomy (Sect. 4.1.2) are presented in Sect. 4.4. The Audio
class defines audio quality attributes based on which differ-
ent audio faults can be introduced, as shown in Fig. 22. For
instance, the on attribute is a Boolean attribute that deter-
mines if the audio is present in a videoconference. The Per-
ceptual Evaluation of Speech Quality (PESQ) [51] is a metric
for measuring audio quality. The audioFrameLoss is an attri-
bute that determines the current percentage of audio frames
loss during a videoconference and is defined as the MARTE
type NFP_Percentage. The noiseLevel attribute is defined as
the Nfp type NoiseLevel (modeled with « NfpType » from
MARTE), which has two attributes: value that holds current
noise value, and unit contains a unit to measure audio noise
such as “decibel”.

Similarly, the following video quality properties are
defined in the class diagram: The on attribute determines if
the video is present in a videoconference. The videoQuality
attribute is a metric for measuring video quality and video-
FrameLoss determines the current video frame loss during a
videoconference modeled as MARTE’s NFP_Percentage.

5.5 Activity A5: develop a state machine for the robustness
aspect

5.5.1 Modeling recovery from media faults

Recall that each robustness aspect is modeled as a UML state
machine with stereotypes from AspectSM (aspect state
machine). Figure 23 shows the details of the MediaQuali-
tyRecovery aspect state machine. Attribute values of the var-
ious stereotypes are presented in Fig. 23 in notes. The aspect
state machine models the robust behavior of a VCS in the
case when media quality falls below the acceptable level and
tries to return to an acceptable media quality level. In the
worst case, the VCS cleans up system resources and goes
back to the most recent safe state (e.g., Idle in our industrial
case study), in which the VCS was exhibiting normal behav-
ior. Such a robust behavior is very important in a commercial
VCS, as quality expectations are high regarding robustness
to media quality faults.

On the MediaQualityRecovery aspect state machine, the
« Aspect » stereotype is described in the top-left note
(labeled “1”) in the upper left part of Fig. 23. This aspect state
machine consists of two pointcuts on states: SelectedStates
and Idle, the attribute values of which are described in notes
explicitly linked to each « Pointcut » note. Representing
pointcuts as modeling elements of UML state machines (for
instance, state in this case) enables the modeling of aspect
state machines using standard UML notation, while keeping
in line with UML semantics. The SelectStatesPointcut (see
note 3 for attribute values) applied to the SelectedStates state
selects all states of the base state machine (Fig. 3) except
for the Idle state. The SelectIdleState pointcut (see note 5
for attribute values) on the Idle state selects the Idle state
of the base state machine (Fig. 3). Whenever media qual-
ity (defined based on the quality attributes in Fig. 22) falls
below the acceptable level in any of the states selected by the
SelectStatesPointcut pointcut, the system goes to the

RecoveryMode state. This is shown as a transition with the
«I ntroduction», «MediaFault», and «External Fault»
stereotypes (indicating that this transition will be introduced
in the base state machine and models media faults which
are external to S-Saturn) from the SelectedStates state to the
RecoveryMode state with nine change events. Each change
event is defined based on one media quality attribute and
determines if this attribute falls below the acceptable level
and is stereotyped as either «AudioFault», «V ideoFault»,
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Fig. 23 The MediaQualityRecovery aspect

Context Saturn::Media 
not self.video.on  
or self.video.videoFrameLoss.value >  self.video.videoFrameLossThreshold.value or self.video.videoQuality > self.video.videoQualityThreshold  
or not self.audio.on   
or self.audio.audioFrameLoss.value > self.audio.audioFrameLossThreshold.value or self.audio.noiseLevel.value and self.audio.noiseLevel.value <=  

    self.audio.noiseLevelThreshold.value   
or self.audio.PESQ > self.audio.pesqThreshold or self.audio.mixingAudio or self.synchronizationMismatch.value >    

    self.synchronizationMismatchThreshold.value 

Fig. 24 State invariant for RecoveryMode

or both. For example, the change event when(not self.audio.on)
is fired from SelectedStates when the audio is turned off in a
videoconference and is stereotyped as « AudioFault » indi-
cating that it is an audio fault (see the comment labeled C1
and note “2” for attribute values—recall that these attributes
are defined based on IEEE standard classification for anoma-
lies [14]). If the system manages to return to acceptable media
quality, it goes back to the normal state shown as a transi-
tion introduced from the RecoveryMode state to the Selected-
States state stereotyped as « Normal » (indicating that these

states are normal states of S-Saturn) with again nine change
events. For example, the change event when(self.audio.on)
is fired from the RecoveryMode state when the audio is back
in the videoconference. The state invariant of the Recovery-
Mode state ensures that S-Saturn remains in RecoveryMode
as long as any of the faults in the environment exist. This
state invariant is simply the logical disjunction of all change
events modeling the faults (Fig. 24). In the other case, if the
system cannot recover within time time, it disconnects all
connected VCS and goes to the Idle state. This is modeled
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Fig. 25 State machine for the AddGuard aspect

as a transition introduced between the RecoveryMode state
and the Idle state with a time event and an effect Discon-
nectAll with an opaque behavior, which is a type of behavior
defined in UML to specify implementation-specific seman-
tics. In addition, the Idle state is stereotyped as « I ni tial »,
which indicates the state of S-Saturn if it is not successful
in recovering to an acceptable level of media quality. In our
context, DisconnectAll is a call to Saturn’s API in a python-
based proprietary test script language. This call disconnects
all connected systems to a VCS.

5.5.2 Constraining input parameter values

The second crosscutting behavior example we present is con-
straining parameters of events on transitions. Since many
transitions in a state machine can have the same trigger and
constraints on the associated event of the trigger may be
the same, redundant constraints can exist in the model and
hence can be factored out as an aspect. Such constraints can
be used to generate test cases exercising the system robust-
ness with illegal inputs [52]. The aspect state machine Add-
Guard shown in Fig. 25 models this crosscutting behavior.
The associated class diagram for the aspect state machine
is identical to Fig. 2 as we do not need to model additional
properties. This aspect state machine defines two pointcuts
(SelectSourceStatesOfTransition, SelectTargetStatesOfTran-
sition) on two states and one pointcut SelectTransitions-
Pointcut on the transition between the two states stereo-
typed as « Pointcut ». This aspect state machine selects
all transitions which have a dial call event and applies a
before advice AddGuardBeforeAdvice that adds an addi-
tional constraint “number.size() = 4” to the existing guards
on the selected transitions. This constraint ensures that the
number parameter of the dial call event has exactly four
digits.

Fig. 26 A state machine describing ordering of aspects for weaving

5.6 Activity A6: define ordering of aspects using a state
machine

We begin with testing a related set of aspects modeling on
robustness behavior. The related set of aspects is woven into
a base model in a specific order to ensure that the woven
model is complete and correct. To achieve this, an ordering
must be defined between the aspect state machines (activ-
ity A5). This ordering is also modeled as a state machine
(denoted as weaving-directive state machine), containing all
aspect state machines as submachine states ordered using
UML state machine’s control structure features such as deci-
sion, join, and fork. The complete template for the definition
of a weaving directive state machine is shown in Sect. 4.6.

The weaving directive state machine for MediaQuali-
tyRecovery is shown in Fig. 26. Using such state machine,
we define the ordering of aspect state machines related
to media quality. By weaving the aspect state machines
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in this order, the woven state machine will be correct
for testing. The reason is that MediaQualityAspect intro-
duces the DegradedMode state in the base state machine
and the first two aspect state machines update audio and
video quality constraints in state invariants of all states of
the base state machine. These constraints should not be
updated in DegradedMode because in this state the sys-
tem works with degraded performance and audio and video
quality will not be as expected. If MediaQualityAspect is
woven before AudioQualityAspect and VideoQualityAspect,
the woven state machine will contain DegradedMode with
wrong state invariants. In this paper, we aim to weave and
test a set of related aspects (e.g., related to media quality) but
not all aspects altogether. In the future, we will investigate
how to test by weaving different aspects at the same time.

5.7 Activity A7: weave aspects with behavioral models

Finally, the aspect state machines are woven into the base
state machine by the weaver, which reads the base state
machine, aspect state machine(s), and a weaving-directive
state machine and produces a woven state machine.

5.7.1 Modeling recovery from media faults

The woven state machine resulting from applying Media-
RecoveryAspect to the Saturn base state machine is not eas-
ily comprehensible, but it is only meant to be processed by
model-based testing tools. An excerpt of the woven state
machine is however shown in Fig. 27, and details regarding
the model complexity of woven state machines are sum-
marized in Table 11. From all states except Idle and Pre-
sentingWithoutCall, transitions to RecoveryMode are added.
Each of these transitions contains nine change events that
can lead to the RecoveryMode state, such as the woven state
machine in Fig. 27, which contains a new state Recovery-
Mode. From NotFull, a transition is added that contains nine
change events that can lead to the RecoveryMode state such
as change events “sel f.video.videoFrameLoss.value >

videoFrameLossT hreshold.value′′ and “not (self.audio.
on)”. The first change event is triggered when, during a
videoconference, video frame loss becomes greater than
the allowed frame loss (videoFrameThreshold), whereas
the second change event is triggered when audio disap-
pears from a videoconference. These change events are
defined in the context of the conceptual class diagrams
shown in Fig. 2 and the class diagram modeling media qual-
ity attributes in Fig. 22. Recall from Sect. 5.4 that both
class diagrams are defined in the same package: Saturn.
After weaving, the class diagram in Fig. 22 is merged into
the conceptual class diagram in Fig. 2. Therefore, after

weaving, the attributes defined in Fig. 23 have the same
context: the “Saturn” class in Fig. 2. Similarly, six tran-
sitions from RecoveryMode to all states except Idle and
PresentingWithoutCall have been woven into the base state
machine. Each transition has nine change events that can
lead the system back to the state it was in before Recov-
eryMode, e.g., in Fig. 27, a transition with six change
events is added that can lead the system back to the
NotFull state. For instance, the VideoFrameLoss change
event in Fig. 27 specifies that when video frame loss is
within the allowed frame loss and the system was in the
NotFull state, a VCS transitions from RecoveryMode to
NotFull. The change event has two parts: the first part
(self.video.videoFrameLoss.value >= 0 and self.video.vid-
eoFrameLoss.value <= videoFrameLossThreshold.value)
checks if videoFrameLoss is within the allowed threshold.
The second part is the state invariant of the NotFull state,
which checks that the active calls in a videoconference
are more than one (self.systemUnit.NumberOfActiveCalls
> 1 and self.systemUnit.NumberOfActiveCalls<self.system-
Unit.MaximumNumberOfCalls) and S-Saturn does not send a
presentation (self.conference.PresentationMode = ’off’). In
addition, it checks that S-Saturn is not sending or receiving a
presentation (self.conference.calls->select(c:Call| c.outgo-
ingPresentationChannel->asSequence()->last().Protocol =
VideoProtocol::off)->size()=0 and self.conference.calls->
select(c:Call |c.incomingPresentationChannel->asSequence
()->last().Protocol <> VideoProtocol::off)->size() = 0).

5.7.2 Constraining input parameter values

An excerpt of the woven state machine is shown in Fig. 28.
On the transitions with the dial() trigger, where there were no
guards, “number.size() = 4” was added, such as on the tran-
sition with the dial() trigger from Connected_1 to NotFull
in Fig. 28. For the transitions with the dial() trigger, where
there were guards already present in the base state machine,
“number.size() = 4” was conjuncted to the existing guards,
such as on the self-transition on NotFull in Fig. 28.

6 Results from the complete industrial case study

In this section, we present results and discussions from the
entire industrial case study. This is based on an augmented
and complete version of the simplified case study presented
in Sect. 5. Our goal is to assess whether RUMM addresses
practical needs when modeling the robustness behavior of a
realistic system and whether it has the potential to provide
significant benefits in terms of reducing modeling effort and
error proneness.
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VideoFrameLoss =  when (self.video.videoFrameLoss.value  >= 0 and self.video.videoFrameLoss.value  <=  videoFrameLossThreshold.value)  and 

(self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls < self.systemUnit.MaximumNumberOfCalls) and self.conference.PresentationMode = 

'off' and self.conference.calls->select(c:Call| c.outgoingPresentationChannel->asSequence()->last().Protocol = VideoProtocol::off)->size() = 0 and self.conference.calls-

>select(c:Call   c.incomingPresentationChannel->asSequence()->last().Protocol <> VideoProtocol::off)->size() = 0 ) 

Fig. 27 An excerpt of woven state machine obtained after applying the MediaQualityRecovery aspect

Table 10 Complexity of Saturn
state machines Subsystem Number of states Number of transitions

States Submachine states

1 15 4 56

2 6 0 20

3 2 0 2

4 2 0 5

5 2 0 2

6 22 7 63

7 2 0 2

8 5 0 2

9 2 0 2

10 2 0 2

11 3 0 2

12 4 0 7

13 6 0 8

14 2 0 3

15 2 0 3

16 2 0 2

17 3 0 2

18 4 0 10

19 2 0 2

20 4 0 20
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Table 11 Modeling tasks when using and not using AspectSM

Crosscutting
behavior

Using aspects Without aspects Effort saved (%)

States
(Added)

Transition
(Added)

Trigger
(Added)

States
(Modified/
Added)

Tran-
sitions
(Modified/
Added)

Trigger
(Added)

States Transi-
tions

Trigger

Updating audio
constraints

1 − − 86 (Modified) – − 99% − −

Updating video
constraints

1 − 86 (Modified) – − 99% − −

Media quality
recovery

3 3 19 20 (Added) 178 1604 − 98% 99%

Network
communication

3 3 13 20 (Added) 178 1082 − 98% 99%

Add Guard 2 1 − 0 22 (Modified) − − 95% −

Fig. 28 An excerpt of woven state machine obtained after applying
the AddGuard aspect

6.1 Behavioral models of Saturn

Saturn consists of 20 subsystems. Each subsystem can work
in parallel to the S-Saturn subsystem shown in Fig. 3. For
each subsystem, we modeled a class diagram to capture APIs
and state variables. In addition, we modeled one or more
state machines to model the behavior of each subsystem.
Due to confidentiality restrictions, we do not provide names
and details of the subsystems. For one subsystem (subsystem
no 1), which is described in Sect. 2, we provided a concep-
tual model in Fig. 2. The behavioral model of the subsystem
number 1 in Table 10 consists of 15 states: 4 of them are mod-
eled as submachine states to reduce model complexity. The
state machines of this subsystem are presented in [45]. For
other subsystems, we do not provide class diagrams and state
machines, but their complexity is summarized in Table 10. It
is important to note though the complexity of an individual
subsystem may not look high in terms of number of states
and transitions; all subsystems work in parallel to each other
and, therefore, the overall complexity is enormous after com-
bining them. Saturn’s implementation consists of more than
3 million lines of C code.

6.2 Modeling robustness behavior

We modeled three crosscutting behaviors on Saturn. The first
two are the same as presented in Sect. 5.4 and Sect. 5.5.
In addition, we modeled the behavior of Saturn in the pres-
ence of different network communication faults (Network-
Communication) such as packet loss, jitter, and illegal pack-
ets in videoconference protocols. The NetworkCommunica-
tion aspect is presented in Appendix C.

6.3 Results and discussion

In this section, drawing lessons learned from our case study,
we discuss the benefits achieved by applying RUMM to
model the robustness crosscutting behavior of Saturn.

6.3.1 Reduced modeling effort

Modeling effort can be measured in different ways. One way,
which is part of our future research plans, is to conduct
a controlled experiment that can compare the modeling
effort of applying aspect state machines with standard UML
state machines. An alternate, much less expensive way is
to estimate modeling effort through a surrogate measure,
the number of modeling elements required to be modeled.
This number can then be compared in aspect state machines
and standard UML state machines when modeling the same
crosscutting behaviors. Table 11 summarizes the model-
ing tasks involved when using and not using aspect state
machines for modeling the above-mentioned crosscutting
behaviors. The first two crosscutting concerns are related
to updating audio and video constraints (Appendix A) in 86
states of Saturn. Using our profile we need to model one state
in the aspect state machine, whereas 86 states of Saturn need
to be changed if one is modeling this behavior directly. This
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means a reduction of approximately 99% of the number of
elements involved in the change.

The third crosscutting behavior is for modeling media
quality recovery. When using AspectSM, we need to model
three states and three transitions in the aspect state machine
(Fig. 23). Two transitions have nine triggers, each with
change events, and one transition has one trigger with a time
event. On the other hand, without aspect state machines, we
need to model one new state and 178 new transitions with
1604 triggers (1603 with change events and one with a time
event) in the base state machines of Saturn. This means that,
assuming modeling effort is roughly proportional to the num-
ber of modeling elements, there is a 99% effort reduction in
modeling triggers and a 98% effort reduction in modeling
transitions. However, since the use of aspect state machines
requires modeling three extra states with the « Pointcut »
stereotype, there will only be a benefit if modeling 1604 trig-
gers on a state machine is more time-consuming than model-
ing three pointcuts. Though this seems to be likely, it would
need to be confirmed via controlled experiments involving
human designers to determine the actual percentage of mod-
eling effort saved when using aspect state machines. Sim-
ilar results were obtained for the Network Communication
aspect. Results from the last crosscutting behavior in Table 11
(Add Guard) indicate that when using aspect state machines,
we need to model two states and one transition, whereas
without aspect state machines we need to change 22 transi-
tions in the base state machine of one of the subsystems of
Saturn.

Overall, the results of this industrial case study seem to
suggest that the modeling effort can be significantly reduced
when using aspect state machines for modeling crosscutting
behavior using AspectSM. Such industrial case studies show-
ing the practical advantage of aspect modeling are unfor-
tunately still too rare in the research literature and we are
therefore not in a position to make comparisons with previ-
ous works.

6.3.2 Enhanced separation of concerns

Modeling crosscutting behavior in the UML state machines
provides enhanced separation of concerns. For instance, the
AddGuard aspect state machine models constraints on input
parameters of the call event “dial” separately from the base
state machine. In addition, the MediaQualityRecovery aspect
state machine (Fig. 23) models a complex media quality
crosscutting behavior separately from the base state machines
and other aspect state machines. This means that a modeler,
or several of them with possibly different expertise, can focus
on each crosscutting concern separately and therefore model
them separately from the core functionality and other cross-
cutting concerns. This is very important for our industrial

partner since they have separate groups for different kinds
of testing activities including functional testing, video test-
ing, audio testing, and network testing. Using our method-
ology, each group can model aspects which are related to
their expertise and our tool can then be used to automatically
weave these aspects with the behavioral base models (models
developed by the functional testing group).

6.3.3 Improved readability

Modeling crosscutting behavior as aspect state machines
keeps the base state machine less cluttered and hence easier
to read. For instance, the woven state machine after apply-
ing MediaQualityRecovery on the Saturn base state machine
results in a highly complex, cluttered state machine, which is
difficult to read: 20 states and 178 new transitions with 1604
triggers are added into the base state machines. Our experi-
ence is that modeling such complex state machines without
aspect state machines is difficult to understand for practitio-
ners and is error prone. Using aspect state machines, the base
state machine and aspect state machines are separate and are
less complex in isolation. To confirm this, we recently con-
ducted a controlled experiment to measure the readability
of aspect state machines using AspectSM [53]. Readability
was measured based on the identification of defects seeded
in state machines (modeled with and without AspectSM)
and the score obtained when answering a comprehension
questionnaire about the system behavior. The results of the
experiment showed that readability with AspectSM is signif-
icantly better than that with both flat and hierarchical state
machines measured in terms of inspecting models to identify
seeded defect. In terms of the comprehension questionnaire,
the AspectSM scores were better than flat state machines, but
worse than hierarchical state machines. However, there were
no significant differences between aspect and hierarchical
state machines. In addition, no significant differences were
observed in terms of the effort required to inspect models and
detect defects.

6.3.4 Easier model evolution

Model evolution is also expected to be easier when using
aspect state machines. For instance, AudioQualityAspect and
VideoQualityAspect presented in Appendix A change the
state invariants of 86 states in the base state machines.
In future, more media quality measures will likely be intro-
duced, and constraints specific to these measures will be
required. Using our profile, they will be added only in the
aspect state machines we defined. Otherwise, with regular
state machine modeling, the new constraints would need to
be added to all nine states of the base model. In systems with
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hundreds of states, changing the state invariants of all states
is cumbersome and error prone, which makes model evolu-
tion difficult. This will be further investigated with controlled
experiments in the future.

6.3.5 Systematic fault modeling

Using RUMM, we can systematically identify possible clas-
ses of faults for a specific SUT based on the proposed fault
taxonomy. Furthermore, we can then instantiate specific fault
types from the identified classes, which are considered crit-
ical in the SUT environment. We then model them using an
aspect class diagram according to our guidelines (Sect. 5.4)
and aspect state machines based on RobustProfile (Sect. 4.3).
The entire process follows systematic steps to identify and
model faults (Fig. 4).

6.4 Limitations

RUMM is a modeling methodology specifically developed
for modeling robustness behavior to facilitate automated
model-based testing. While developing the methodology, we
took into consideration only those issues which were rele-
vant for modeling the behavior of a system in the presence
of faulty situations in the environment. We have not inves-
tigated whether other non-functional crosscutting concerns
such as security and dependability can be successfully mod-
eled using RUMM or an adapted version of it. The reason is
that RUMM starts with modeling faults based on fault tax-
onomy for the system environment, which may not be neces-
sary, for instance, when modeling security concerns such as
logging. In addition, since RUMM was developed for model-
based testing, we only considered issues which were impor-
tant to support automated testing. For instance, we focused
on UML state machines, which are often used for the auto-
mated testing in control and communication systems, which
typically exhibit state-driven behavior. We also focused on
modeling crosscutting behavior on those modeling elements
of state machines that are mandatory to support test automa-
tion such as states (including state invariants, entry, exit, and
do activities) and transitions (including guard, trigger, and
effect). In AspectSM, we write pointcuts as OCL queries,
and we have not yet empirically evaluated and compared their
expressiveness when using other related languages and nota-
tions such as the one presented in [6]. We used OCL to write
pointcuts as it is the only standard for writing constraints
in UML models, an important advantage in industrial con-
texts. Last, our work for defining interactions and ordering
between different aspect state machines still requires further
investigation.

7 Related work

This section discusses existing works that are directly, but
often partially, related to the objectives of RUMM. We ana-
lyze and compare published work on robustness modeling
methodologies and AOM profiles for UML state machines,
generic AOM weavers, and testing based on AOM.

7.1 Robustness modeling methodologies

Most of the work related to robustness modeling does not
make use of AOM and focus only on modeling the behav-
ior of a system when invalid inputs are given to the sys-
tem, or on modeling exceptions in the SUT in a similar
fashion to programming languages. For instance, Pintér and
Majzik [54] reports on the modeling of exceptions in state-
charts in a similar fashion to Java mechanisms for writing
exceptions (try catch blocks). Exceptions are modeled as
events on transitions in statecharts. Such statecharts are sub-
sequently used for model checking. Jiang et al. [55] pro-
posed a generic framework to model self-healing software,
i.e., software which tries to recover from faults during their
execution. The framework supports modeling faults (such as
related to invalid inputs to a system), their detection, and
their resolution with the help of different patterns defined for
these purposes. Self-healing is modeled as separate, which
is then combined into the functional model. Lei et al. [56]
provides a methodology to check the robustness of compo-
nent-based systems in the case of invalid inputs. Test cases
are then generated for invalid inputs at various states and the
robustness of the system is checked. Nebut et al. [57] pro-
vides an automatic test generation approach based on use
cases extended with contracts, after transforming them into
a transition system. Their approach supports both functional
and robustness test generation. Robustness test cases are gen-
erated by calling use cases when their preconditions are false.
Entwisle et al. [58] proposed a framework for modeling vari-
ous domain-specific exception types such as network excep-
tions, database exceptions, and Web service exceptions using
use cases. This approach generates exception policy configu-
rations from application models using model transformation
and finally generates code in Java for exceptions manage-
ment, such as how to catch a particular exception.

The work (RUMM) presented in this paper is different
from the existing work in robustness modeling in one or more
of the following ways: (1) It provides a robustness modeling
methodology to model system robustness in the presence
of faults in its environment; this aspect has received little
attention in the literature. In contrast, most of the existing
works focus only on modeling the behavior of a system when
invalid inputs are given to them [54–57]. (2) It is aimed at
performing automated model-based robustness testing based
on the robustness models for industrial systems. In contrast
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to the work presented in [57], our work is based on UML
state machines, which are the main notation currently used
for model-based test case generation [12]; (3) It relies on
modeling standards, in this case UML state machines and the
MARTE profile [2], to model faulty situations of the envi-
ronment. (4) It uses AOM to model robustness behavior sep-
arately from the core, functional behavior, hence, decreasing
modeling effort by avoiding clutter in models, making them
easier to read and decreasing chances of modeling errors. (5)
We use standard UML extension mechanism, i.e., profile, to
support robustness modeling as aspects using standard UML
state machines, thus eliminating the need to adopt new nota-
tions and consequently facilitating the practical adoption of
RUMM in industry. (6) RUMM is driven by defining a fault
taxonomy, thus leading to the more systematic modeling of
robustness behavior. The process of defining the taxonomy
helps in developing a clear and thorough understanding of the
different kinds of faults that may occur in the environment
against which system robustness must be tested.

7.2 AOM profiles for UML state machines

Several UML profiles for AOM have been proposed in the lit-
erature [59–62] for different UML diagrams. Since we have
defined a profile for aspects on state machines, we only assess
the existing AOM work focusing on state machines. We do so
along three dimensions: (1) Features of UML state machines
supported by a profile such as state, state invariant, do activ-
ity, entry activity, exit activity, transition, guard, trigger, and
effect; (2) Features of aspect-orientation supported by a pro-
file or a modeling approach such as pointcut, advice, and
inter-type declaration (a programming construct in AspectJ
[44] used to introduce new variables in a base class); (3) Rep-
resentation used for the aspect-orientation features. Based on
the above selection criteria, we found five related works in
the literature [27–29,33,63]. Tables 12 and 13 characterize
these works with respect to their coverage of important UML
state machine modeling elements including state, transition,
and their contained elements, e.g., state invariant in state and
guard in transition. For instance, in Tables 12 and 13, the
approach presented in [27] only supports modeling crosscut-
ting behavior in states and transitions (indicated by a + sign),
but not in other modeling elements (indicated by a − sign).
Certain features of UML state machines which are manda-
tory for performing automated, model-based testing are not
supported by any of the existing works. This includes state
invariants and guards which, as discussed above, are essen-
tial to generating automated oracles and automated test data,
respectively.

Table 14 assesses existing works with respect to the fea-
tures of aspect-orientation they support such as types of
advice. In light of these comparisons, one of our profile
(AspectSM) contributions is that it supports all UML state

machines and aspect-orientation features. Table 15 provides
information on the notations used by each approach for
modeling aspect-oriented features, whether UML diagrams
or other non-standard notations. Table 15 suggests that no
existing profile is exclusively based on standard UML nota-
tion and OCL, thus requiring the learning of additional,
non-standard notations or languages, and therefore making
it difficult to reuse open source and commercial technology.
This is, as discussed earlier, highly important in most indus-
trial contexts and strongly affects the adoption of model-
ing technologies. In conclusion, based on the information
provided in Tables 12, 13, 14, and 15, we conclude that
our approach supports all necessary features of UML state
machines and aspect-orientation, which are all required for
model-based robustness testing and do so based exclusively
on standard modeling notations. In addition, our profile is
developed with minimum extensions to the UML standard
and hence eases adoption by our industrial partner.

7.3 Comparisons with generic AOM weavers

A generic weaver, GeKo, is presented in [26], but the cur-
rent implementation of the weaver is not complete (e.g., it
does not support state machines) and its use requires many
manual steps such as specifying mappings from pointcuts
to the base model. Metamodels for pointcut and advice are
defined by relaxing the UML 2.0 metamodel and are gener-
ated automatically from it using a transformation. However,
there is no support for modeling pointcuts and advice based
on the generated metamodels. It therefore requires devel-
oping a new diagrammatic support for these metamodels,
which will not be standard, and consequently will not be sup-
ported by UML modeling tools, making the practical adop-
tion of the weaver difficult. Another similar generic weaver,
SmartAdapter, is presented in [64]. The only major differ-
ence between GeKo and SmartAdapter is that SmartAdapter
requires manually writing composition rules for aspect and
base models, whereas this is not required by GeKo.

An aspect composition language (SDMATA/MATA) is
presented in [6,65], which allows modeling and composing
aspects on UML state machines using patterns. The selection
of modeling elements of a UML state machine (concept sim-
ilar to pointcuts) is performed using state diagram patterns.
With state diagram patterns, modeling elements are selected
using regular expressions defined on diagrammatic notations
that ‘resemble’ UML state machines (defined based on the
extension of UML state machine metamodel). In AspectSM,
we write pointcuts as OCL expressions to query modeling
elements of a base state machine. To compare the expressive-
ness of OCL expressions for writing pointcuts with regular
expressions, a controlled experiment is required, which will
be conducted in the future. The tool support for modeling
patterns in SDMATA, however, is still under development.
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Table 12 Comparison of
supported modeling elements
related to a state

Reference State State invariant Entry activity Do activity Exit activity

[27] + – – – –

[28] + – – – –

[29] + – – – –

[33,66] + – – – –

[63] + – – – –

Table 13 Comparison of
supported modeling elements
related to a transition

Reference Transition Guard Trigger Effect

[27] + – – –

[28] + – – –

[29] + + + –

[33,66] + – – –

[63] + – + +

Table 14 Comparison of
supported features of
aspect-orientation

Reference Before advice Around advice After advice Pointcut Introduction

[27] + – + + –

[28] + – + + –

[29] + – + + +

[33,66,26] + + + + +

[63] – + – + –

Table 15 Comparison of the
representation of
aspect-orientation features

Reference Aspect Advice Pointcut Introduction

[27] State machine State machine elements Non-Standard Not supported

[28] State machine Non-Standard Non-Standard Not supported

[29] State machine Non-Standard Non-Standard Non-Standard

[33,66] State machine Non-Standard Non-Standard Non-Standard

[63] Class Activity diagram Non-Standard Not supported

AspectSM State machine State machine elements
and OCL

OCL State machine elements

SDMATA requires defining composition operators (concept
similar to advice) using a language based on graph transfor-
mations. As for other approaches in the literature, applying
SDMATA to industrial contexts, requires learning additional,
non-standard notations such as state diagram patterns.

Kermeta [15] is a model-to-model transformation lan-
guage, which provides the facility to write transformation
code in aspect-oriented style. Using such facility, aspects
can be introduced at runtime on metaclasses (e.g., UML
Statemachine metaclass) for introducing new attributes and
operations on metaclasses or for providing definitions of
existing operations in metaclasses. However, applying Ker-
meta for our purpose in the industrial setting requires under-
standing not only details of the UML metamodel, but also
requires learning a new language for writing aspects. Using

AspectSM, we only need simple stereotypes with a few
attributes, thus reducing the learning curve and improving
applicability. In other words, achieving a similar objective in
Kermeta may require writing hundreds of lines of complex
transformation code.

These generic weavers, being applicable to a wide range
of modeling languages, are of course potentially usable in
our context. On the other hand, such flexibility is possible
only at the expense of additional, significant cost to pro-
vide modeling support for the defined AOM concepts. This
mostly stems from the fact that no standard notation (e.g.,
UML) and metamodel can be used, as described above. This
is why, to facilitate adoption in practice, we decided to rely on
a dedicated UML profile (AspectSM) to define aspect state
machines, thus relying on standard modeling environments.
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7.4 Testing based on aspect-orientation modeling

There are also works in the literature that deal with testing
aspect-oriented programs using UML-based models such as
state machines [66–68]. The focus of our work is different
since we do not focus on testing implementation, which is
coded in an aspect-oriented programming (AOP) language
such as AspectJ [44]. For instance, in our industrial system,
we target system level testing of an embedded software of a
VCS developed by Cisco, Norway, which is implemented in
a subset of C language. In addition, a few approaches such as
those presented in [69,70] focus on testing components using
AOM to specify their behavior as state machines. The aspects
are also specified as state machines to be consistent with the
notation of the core behaviors (components). The compo-
sition rules are specified in their own developed language
(not following any standard), which specify how to weave
aspects into the core behavior. These works focus on model-
ing and testing components when wrong inputs are provided
to them by their users. Our purpose is also different from
these approaches, since we focus on modeling faulty envi-
ronment (network and other VCSs) conditions of the system
under test using aspect state machines and test the behavior
of the VCS in the presence of these conditions.

8 Conclusion

Model-based testing, and in particular automated testing
based on state machines, is a very popular approach to test-
ing, which is supported by an increasing number of open
source and commercial tools. However, for such testing to
be effective, one must not only model nominal behavior but
also robustness behavior. For example, in control systems,
one must model how the system should react to the break-
down of sensors or actuators. In communication systems, in
a similar way, one must model how the system reacts to net-
work problems. Modeling the robustness behavior of systems
in state machines is often a major source of complexity, thus
leading to very large, error-prone models.

To systematically model robustness behavior for model-
based testing and to alleviate its complexity, this paper
presents a RobUstness Modeling Methodology (RUMM)
that uses a UML 2.0 profile to support the modeling of robust-
ness behavior as aspects in UML state machines (aspect state
machines). This profile was developed by augmenting many
of the concepts in existing UML state machine profiles for
AOM to achieve the specific goal of supporting automated,
model-based robustness testing. Furthermore, to make our
approach more practical in industrial contexts, aspect state
machines and their features are modeled using the UML
state machine notation and the Object Constraint Language

(OCL), and therefore does not require that modelers learn
new diagrammatic notations or languages.

Another very important contribution of the paper is that
we performed and report on an industrial case study that
suggests that using our methodology and profile may result
in significantly reduced modeling effort. Such case studies
are indeed very rare and, to the knowledge of the authors,
none is reported on aspect state machines. Results show that
modeling crosscutting behavior as a separate model (aspect
state machine) leads to the modeling of significantly less
states, less transitions and also less changes to constraints
such as state invariants. Modeling both standard and cross-
cutting behavior—in our case robustness behavior—in one
state machine would lead to many redundant modeling ele-
ments and yield cluttered models that are difficult to under-
stand. As an example, for one of the aspect state machines in
our case study, we avoided the modeling of 1586 extra trig-
gers on 178 transitions (98% reduction) by using our profile.
However, this came at the cost of modeling three pointcuts for
that aspect state machine, which is clearly an additional over-
head, but which should be minimized by the fact that they are
modeled as a UML state machine. It is however expected that
the modeling effort required to model three pointcuts is sig-
nificantly less than modeling 1586 triggers. In addition, the
results of a recent controlled experiment [53] showed that
readability of aspect state machines was significantly bet-
ter than standard UML state machines, though there was no
significant difference in the effort to inspect both types
of state machines. Readability was measured based on the
identification of defects seeded in state machines (modeled
with and without AspectSM) and the score obtained when
answering a comprehension questionnaire about the system
behavior.

We also developed a weaver using the model transforma-
tion tool Kermeta [15] to automatically produce woven state
machines. These can in turn be used for different applica-
tions, in our case model-based testing using state machines
in input based on technologies such as Conformiq QTron-
ic [17] and SmartTesting Test Designer [49]. In the future,
we are planning to integrate the woven state machines pro-
duced by our weaver with our model-based testing tool
TRUST [16] to automatically generate robustness test cases.
TRUST [16] has already been used for generating execut-
able functional test cases at Cisco, Norway. In the future,
we will investigate to what extent our profile is applicable
for other types of crosscutting behaviors to be modeled as
state machines. In addition, we need to investigate the effort
required by developers and testers to learn and apply RUMM.
A series of controlled experiments and case studies are
required for this purpose, which we are planning to conduct
in the future. Our work on modeling interactions and ordering
between various aspects still needs further investigation and
evaluation.
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9 Appendix A: Aspects for Updating state invariants

In this section, we present the details of AudioQualityAspect
and VideoQualityAspect. These aspects update state invari-
ants in the base state machine (Fig. 3) with audio and video
quality constraints.

9.1 Updating state invariants with audio quality attributes

The aspect in Fig. 29 updates state invariants for all
simple states where the system is in a videoconference.

In Fig. 29, the « Aspect » stereotype is applied on the state
machine, the attributes of which show that this aspect is
applied to the base state machine (Saturn::Saturn) in this case.
A « Pointcut » stereotype is applied on the state invariant
of the state UpdateStateInvariantsWithAudioQuality. This
pointcut applies a before advice on all states selected by the
pointcut and this results in adding an additional constraint
(see note 3). The woven state machine looks the same as
the base state machines except that the state invariants of the
selected states are updated.

9.2 Updating state invariants with video quality attributes

The aspect in Fig. 30 updates the state invariants of states
selected in the base state machine by the « Pointcut » stereo-
type applied on the state invariant of the state UpdateStateIn-
variantsWithVideoQuality in Fig. 30 according to the before

Fig. 29 State machine for AudioQualityAspect

Fig. 30 State machine for the VideoQualityAspect
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WeaveStateMahine (b: StateMachine, A: Set(StateMachine), w:StateMachine):StateMachine 

/* 

This algorithm takes in input a base state machine b, a set of aspect state machines, and a weaving-directive state 

machine and outputs a woven state machine. All inputs and the output are instances of UML 2.0 State machine 

metaclass.   

*/ 

Inputs: 

b: A base state machine, which is a UML 2.0 state machine.  
A:  A set of aspect state machines. Each aspect state machine is a UML 2.0 state machine. 
w: A weaving directive state machine, which consists of a set of submachine states A’. Each submachine state a’
in A’ corresponds to the an aspect state machine in the set A. w is also a UML 2.0 state machine. 

Output: 

o: A woven state machine, which is a UML 2.0 state machine. 
Algorithm: 

 Traverse sub machines states (aspects) according to the order specified in w
a. For each sub machine state a’ in A’ do  

i. Start with the initial state and go to the first state s in a’
1. For each t in s.outgoing   /* For every outgoing transition of s */ 

a. If (s.stereotype = ‘<<Pointcut>>’) 
i. Call WeavePointcut(s) 

b. Else If (s.stereotype = ‘<<Introduction>>’) 
i. Call WeaveIntroduction(s) 

c. Else  
i. Call WeaveNoStereotype(s)  

Fig. 31 Weaving algorithm

Function WeavePointcut(s:State) 
/* 

This function takes input a state with the stereotype <<Pointcut>> and queries the base state machine with the pointcut 
expression and calls other functions to apply advices on the base s   

*/ 
1. For each t in s.outgoing 

a. If t.target.stereotype = ‘<<Pointcut>>’ 
i. If t.stereotype = ‘’ 

1. Check which model elements (such as guard, trigger, or effect) related to the transition that 
has a stereotype (<<Introduction>> or <<Pointcut>>) 

2. If the model element has a stereotype  <<Pointcut>> 
a. Query the base model b with the selectionConstraint attribute of the pointcut  
b. Apply before, after, or around advice /introduction on the modeling elements 

selected by the pointcut 
c. Call RepeatComposition(t.target) 

ii. Else If t.stereotype  = ‘<<Pointcut>>’ 
1. Call WeavePointcutOnState(s)  
2. Call WeavePointcutOnTransition(t)  
3. Call WeavePointcutOnState(t.target)  
4. Call RepeatComposition(t.target) 

iii. Else  
1. Call WeavePointcutOnState(s)  
2. Call WeavePointcutOnState(t.target) 
3. Add the new transition t as specified in the aspect between the states selected by above 

two steps  
4. Call RepeatComposition(t.target) 

b. Else If t.target.stereotype = ‘<<Introduction>>’  
i. If t.stereotype = ‘’ 

1. Not allowed 
ii. Else If t.stereotype=’<<Introduction>>’ 

1. Call WeavePointcutOnState(s)  
2. Call WeavePointcutOnTransition(t)  
3. Introduce the state t.target as specified in the aspect 
4. Call RepeatComposition(t.target) 

iii. Else  
1. Call WeavePointcutOnState(s)  
2. Introduce the state t.target as specified in the aspect  
3. Add the new transition t as specified in the aspect between the states selected by above 

two steps  
4. Call RepeatComposition(t.target) 

c. Else 
i. Not allowed 

Fig. 32 The WeavePointcut() function
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Function Introduction(s:State)   

/* 

This function takes input a state with the stereotype <<Introduction>> and introduces the new elements in the base model 

as specified by the <<Introduction>> stereotype. 

*/ 

1. For each t in s.outgoing 
a. If t.target.stereotype = ‘<<Pointcut>>’ 

i. If t.stereotype = ‘’ 
1. Not allowed 

ii. Else If t.stereotype  = ‘<<Pointcut>>’ 
1. Introduce the state s as specified in the aspect 
2. Call WeavePointcutOnState(t.target) 
3. Call WeavePointcutOnTransition(t)  
4. Call RepeatComposition(t.target) 

iii. Else  
1. Introduce the state s as specified in the aspect 
2. Call WeavePointcutOnState(t.target) 
3. Add the new transition t as specified in the aspect between the states selected by above 

two steps  
4. Call RepeatComposition(t.target) 

b. Else If t.target.stereotype = ‘<<Introduction>>’  
i. If t.stereotype = ‘’ 

1. Not allowed 
ii. Else If t.stereotype=’<<Introduction>>’ 

1. Introduce the state s as specified in the aspect  
2. Introduce the state t.target as specified in the aspect  
3. Call WeavePointcutOnTransition(t) 
4. Call RepeatComposition(t.target) 

iii. Else  
1. Introduce the state s as specified in the aspect 
2. Introduce the state t.target as specified in the aspect   
3. Add the new transition t as specified in the aspect between the states selected by above 

two steps 
4. Call RepeatComposition(t.target) 

c. Else  
i. Not allowed 

Fig. 33 The Introduction() function

advice defined based on the video quality attributes modeled
in Fig. 26. The on attribute is a Boolean attribute that deter-
mines whether the video is present in a videoconference. The
videoQuality is a video quality metric for measuring video
quality and is defined as an Integer. The videoFrameLoss is
an Integer attribute that determines the current video frame
loss during a videoconference.

The « Bef ore » stereotype applied on the state invariant of
the state UpdateStateInvariantsWithVideoQuality in Fig. 30
adds an additional conjunct to state invariants of all selected
states (see note 3 for attribute values). The woven state
machines look exactly the same as the base state machines,
as only state invariants changed in this case.

10 Appendix B: Weaver algorithm

See Figs. 31, 32, 33, 34 and 35

11 Appendix C: Network communication aspect

11.1 Description of the aspect

The purpose of this aspect is to model the behavior of a
system in the presence of various network faults. A sys-

tem is supposed to work even under the presence of faults
and unwanted conditions (degraded mode). By degraded
mode, we mean that the system should continue to behave
as in the non-faulty situation, except that the quality (such
as audio and video) or the performance is degraded such
as slow speed of running applications on a videoconfer-
ence system. The system must try to recover from the
degraded mode and go back to the normal mode of oper-
ation. In the worst case, the system must return to the safe
state.

11.2 Network robustness (NR) aspect (aspect class
diagram)

Figure 36 shows a class diagram that models the robust
behavior of the system in the presence of different network
faults defined based on the fault taxonomy (Fig. 5) such as
jitter, packet loss, low bandwidth, illegal packets for video-
conferencing protocols (SIP and H323), and in the case of
no network connection. Six network properties are modeled
in the class diagram that models different faulty situations.
Five network properties are modeled as non-functional (NF)
types using the MARTE profile [2]: packet loss, jitter, band-
width, and percentage of illegal packets for H323 and SIP
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Function WeavePointcutOnState(s:State) 

/* 

This functions queries the base state machine according to the query expression specified in the pointcut and applies the 

advice as specified by the pointcut 

*/ 

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s. 
2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the 

model elements selected by the selectionConstraint in step 1. 

(c)

Function WeaveNoStereotype(s:State) 

/* 

This function takes input a state without any stereotype from an aspect state machine and applies advice/introduction on the 

base state machine as specified in the modeling elements contained within the state.  

*/ 

1. For each t in s.outgoing  /* for each transition going out of s */ 
a. If t.target.stereotype = ‘<<Pointcut>>’ 

i. Not allowed 
b. Else If t.target.stereotype =’<<Introduction>>’ 

i. Not allowed 
c. Else 

i. Check which model elements (such as state invariant, do, entry, or exit activity) related to the state s
that has a stereotype (<<Introduction>> or <<pointcut>>) 

ii. If the model element has a stereotype  <<pointcut>> 
1. Query the base model b with the selectionConstraint attribute of the pointcut  
2. Apply before, after, or around advice /introduction on the modeling elements selected by 

the pointcut 
iii. Repeat steps i and ii for the state t.target
iv. Call RepeatComposition(t.target) 

Function RepeatComposition(s:State) 

/* 

 This function traverses the aspect state machine and calls appropriate functions to evaluate pointcut and introduction 

*/ 

1. If (s.isFinal !=true) /* checks if s is a final state */
a. If s.stereotype = ‘<<Pointcut>>’ 

i. Call WeavePointcut (s) 
b. Else If s.stereotype = ‘<<Introduction>>’ 

i. Call WeaveIntroduction (s) 
c. Else  

i. Call WeaveNoStereotype (s) 

(a)

(b)

Fig. 34 a The WeaveNoStereotype() function. b The RepeatCompostion() function. c The PointCutOnState() function

Function WeavePointcutOnTransition(t) 

/* 

This function queries the base model according to the query expression specified in the pointcut and applies the advice as 

specified by the pointcut 

*/ 

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s. 
2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the 

model elements selected by the selectionConstraint in step 1. 

Fig. 35 The PointcutOnTransition() function

123



Modeling robustness behavior using aspect-oriented modeling 667

Fig. 36 Class diagram for the NR aspect

protocols. The network connection is modeled as a Boolean
attribute.

11.2.1 PacketLoss

This property is defined to introduce packets loss during com-
munication and is measured in terms of percentage. This
property is defined to be of the MARTE type NFP_Percent-
age because packet loss is always measured in percentage
and the NFP_Percentage is defined in the MARTE profile
for this purpose.

11.2.2 Jitter

This property introduces delay between network packets.
This delay is introduced in the unit of millisecond (ms) and
checks robustness of a videoconferencing system in the pres-
ence of delayed network packets. This property has two attri-
butes: value of type Integer and unit of the MARTE type
TimeUnitKind. The type TimeUnitKind of the MARTE pro-
file is used to define units for time values such as millisecond
and microsecond. We chose this data type so that a modeler
can choose the appropriate unit to measure unit. We set the
default value of the unit attribute to millisecond (ms).

11.2.3 Bandwidth

This property is used to change the bandwidth of the net-
work and is measured in terms of Kilobytespersecond (Kbps)
and checks robustness of a videoconferencing system in the
presence of low bandwidth than required by a videoconfer-
ence. This property has two attributes: value of type Integer
and rate of the MARTE type DataTxRateUnitKind. The type
DataTxRateUnitKind is used to define units for data trans-
mission such as KiloBytesPerSecond (Kbps) and MegaByte-

sPerSecond (Mbps). We chose this data type because it allows
a modeler to change the unit of data transmission as required.
We set the default value of the rate attribute to KiloBytesPer-
Second (Kbps).

11.2.4 IllegalH323PacketPercent

This property is used to add illegal packets for the H323 vid-
eoconferencing protocol during a videoconference to see how
a VCS behaves. This property is of type NFP_Percentage.

11.2.5 IllegalSIPPacketPercent

This property is used to add illegal packets for the SIP video-
conferencing protocol during a videoconference to see how
a VCS behaves. This property is of type NFP_Percentage.

11.3 Aspect state machine for NR

The aspect state machine for the NR aspect is shown in
Fig. 37. The ‘NetworkCommunication’ state machine is ste-
reotyped as ‘Aspect’ and the attributes associated with the
stereotype are shown in the note labeled 1. The first attribute
name specifies the name of the aspect, which is Network-
Communication in this case. The second attribute baseState-
Machine specifies the base state machine on which the aspect
will be woven, which is Saturn (Fig. 3) in this case.

A pointcut named ‘SelectStatesPointcut’ on the state
‘SelectedStates’ is shown in Fig. 37 (see note 3), which
selects all states of the base state machine except for
the Idle and PresentingWithoutCall states. New transitions
modeling robust behavior of the system from all states
selected by the ‘SelectStatesPointcut’ pointcut to a new state
‘DegradedMode’ stereotyped with the « I ntroduction » and
« External Fault » stereotypes are introduced. These
robustness transitions are modeled as UML change events
and stereotyped with the « Network Fault » stereotype,
which indicates that this event is modeling a network fault.
For instance, when ‘when (not self.networkConnection)’
in any of the states selected by the pointcut, the system
goes to the state ‘DegradedMode’, which is stereotyped as
« I ntroduction » indicating that this state will be intro-
duced in the base state machine. In this state, the system tries
to recover the network connection. If the system is success-
ful in recovering the network connection, the transition with
the change event ‘when(self.networkConnection)’ takes the
system back to the original state, which is one of the states
selected by SelectedStates state stereotyped « Normal »
to indicate that this is a normal state of the system. If the
system cannot recover within time t , then the system dis-
connects all the systems and goes to the ‘Idle’ state stereo-
typed as « I ni tial » indicating that this is the initial state
of the system. This is modeled as a new transition from the
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Fig. 37 State machine for the ‘NetworkCommunication’ aspect

‘DegradedMode’ state to the ‘Idle’ state, with a time event
after(t), and a new effect ‘DisconnectAll’ with an opaque
action ‘disconnect’, which disconnects all the systems con-
nected to the system.
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