
Model-based Testing of Video Conferencing

Systems: Challenges, Lessons Learnt, and Results

Shaukat Ali

Certus Software V&V Center, Simula Research Lab

Oslo, Norway

shaukat@simula.no

Hadi Hemmati

Department of Computer Science, University of Manitoba

Winnipeg, MB R3T 2N2, Canada

hemmati@cs.umanitoba.ca

Abstract— Model-Based Testing (MBT) is a well-established

and intense field of research in academia. It has attracted

attention of many industries as it can be seen from many

industrial experiences of MBT reported in the literature and

availability of commercial and open source tools in recent years.

The thorough and methodical approach of MBT facilitates

automated testing with the intention of improving the quality of

software systems. Every industrial application of MBT faces

varied challenges depending on the application domain, the

current testing practices and tools, and the type of testing.

Reporting such challenges, their solutions, and lessons learnt

provides a body of knowledge, which can direct practitioners of

MBT for their future applications of MBT. With such aim in our

mind, we present results from an MBT project that is being

carried out for testing embedded video conferencing systems

developed by Cisco Systems, Inc. Norway for the last several

years. We present challenges faced while conducting MBT, our

solutions, some of the key results, and lessons learnt from our

experience. Our experience showed that search algorithms

provide an efficient solution for test case selection and test data

generation. In addition, aspect-oriented modeling provides a

scalable modeling solution for non-functional testing. Finally, we

learned that model transformation offers an elegant solution for

developing a model-based test case generation tool. All of our

results are based on a large number of rigorous empirical

evaluations.

Index Terms— Model-based Testing, Industrial Applications,

Test Data Generation, Test Case Selection, Model

Transformation, Search Algorithms, Aspect-Oriented Modeling

I. INTRODUCTION

Software is being incorporated into an ever-increasing

number of systems including embedded and safety critical

systems, and hence it is becoming increasingly important to

thoroughly test these systems. One challenge in software

testing is the effort involved in creating and evaluating a test

suite that will systematically test the system and reveal latent

faults in an effective manner [1]. Model-Based Testing (MBT)

supports rigorous, systematic, and automated testing, which

eventually reduces the number of faults in the delivered

software systems and thus improves their quality. MBT in a

nutshell is an automated approach for deriving the test cases

from a behavioral model of a system and evaluating the test

cases against the requirements specified in the model [2, 3].

MBT is a well-established field and has got a lot of attention in

the recent years both in industry [4-7] and academia [2, 8-12].

A general process of MBT is the same for any of its

applications regardless of industry or academia, i.e., modeling a

System Under Test (SUT), transforming models of the SUT

into a test model, and finally generating executable test cases

from the test model based on a coverage criterion. However,

applying MBT to a new industrial application always faces new

challenges because of the industry-specific testing practices,

expertise, tools, and type of SUTs. Reporting these challenges

always provide a different perspective on MBT with which

other practitioners applying MBT to an industrial application

can benefit.

With the above aim in mind, in this paper, we report our

experiences of applying MBT to testing of Video Conferencing

Systems (VCSs) developed by Cisco Systems, Inc. Norway.

For almost five years, we are involved in various model-based

test cases generation activities (more specifically functional

system testing and robustness testing) at Cisco Systems,

Norway. In 2007, a team of two PhD students and two senior

researchers from Simula Research Laboratory in Norway

initiated a project [13] with Tandberg AS, a world-leading

company in manufacturing VCSs which is later on bought by

Cisco Systems in 2010. The system under study in this project

is a VCS, called Saturn, with 20 subsystems and more than

three million lines of C code. The core functionality of Saturn

is to manage sending and receiving of multimedia streams. The

audio and video signals of a call are sent through separate

channels and there is also a possibility of transmitting

presentations in parallel with audio and video. Presentations

can be sent only by one conference participant at a time and all

others receive it.

The high-level goal of this collaboration was to increase

cost-effectiveness of black-box system-level testing of the

VCSs (both functional and non-functional) by means of

systematic test automation. The strategy taken by the research

team was MBT, since it systematically provides automation in

both test generation and evaluation phases. During this ongoing

project, all the 20 subsystems of Saturn were modeled, using

UML and its extensions, by our research team with the help of

domain experts from the company. Specifically, one of the 20

subsystems, which is responsible for the core functionality of

Saturn, is tested using MBT against both functional and some

robustness requirements (unfortunately, we cannot report

details on the code of the SUT, due to confidentiality

restrictions).

To enable automation of these types of testing, several sub-

problems need to be solved including: selection of modeling

notations and tools, defining test models and coverage criteria,

test data generation, test selection strategies, and test case

generation tool. For each of these sub-problems, we report the

challenges we faced, our solutions with key results, and lessons

learnt from these experiments. These lessons learnt provide

useful insights to practitioners of MBT, who can benefit from

these while applying MBT in their context. The main

contributions of this paper are as follows:

1) We provide an overview of the entire process of MBT

applied on an industrial setting.

2) We discuss the challenges of applying MBT on a

typical industrial system.

3) We report our approaches to handle the challenges

and summarize some of the results.

4) We summarize our lessons learned which can be used

as a set of guidelines to practitioners or researchers for

applying MBT in industry.

The rest of the paper is organized as follows: Section II

provides a quick background on MBT. Section III discusses

challenges we faced when applying MBT, Section IV gives an

overview of our test case generation tool, Section V provides

key results, and Section VI summarizes the lessons learnt from

our experiments. We review some of related MBT industrial

experiences in Section VII. Finally, we conclude our paper in

Section VIII.

II. BACKGROUND: MODEL-BASED TESTING

Model-based testing (MBT) is defined as “the generation of

executable test cases from behavioral model of the system

under test” [14]. A test case specifies the present state of the

SUT and its environment, the test inputs and conditions, and

oracle information [14, 15]. An example of a test input is a

sequence of functions or method calls and their input

parameters. Oracle information identifies properties that should

be true after the execution of the test case. Several strategies

can be considered to implement efficient oracles [14, 15].

The general process of MBT that we use in this paper starts

with modeling the SUT and making it ready for test generation.

The next step is deriving abstract test cases from the test ready

models according to a test strategy. The test strategy is

typically defined based on a test model and coverage criteria to

guide its traversal [16]. In the next step, executable test cases

are generated using abstract test cases and input test data.

Finally, all or part of the generated test suite is executed and

evaluated based on the expected results represented in the input

models. Therefore, we divide the MBT process in three phases:

A. Modeling a SUT

The choice of modeling techniques and notations depends

heavily on the SUT domain and testing objectives. In our case

studies, we apply MBT on embedded real-time systems for

system-level testing. Embedded real-time systems [17], along

with systems of many other domains such as

telecommunication systems [3, 18] and multimedia systems

[19], exhibit state-driven behavior. Therefore, to model such

behavior, UML state machines, which are extensions of

traditional Finite State Machines (FSM), can be used.

Traditional FSMs cannot model software systems with

concurrent behavior. Concurrency in UML state machines is

modeled using composite states with two or more regions [20].

When modeling complex software systems with FSMs, the

number of states and transitions can grow exponentially with

system size. This can be handled by UML state machine

features for modeling submachines. Many tools (e.g., [21, 22])

support the modeling of UML state machines.

B. Test Case Generation

To apply MBT on UML state machine, as the input model,

several test strategies are presented in the literature, such as

piecewise, all transitions, all transitions k-tuples, all round-trip

paths, M-length signature, and exhaustive coverage [15]. For

example, the all transitions strategy requires that all transitions

in a state machine must be covered. To cover all transitions, a

test tree (consisting of nodes and edges corresponding to states

and transitions in a state machine) is constructed by breath-

first/depth-first traversal of the state machine. The constructed

test tree is called a transition tree. Now, by traversing all paths

in the transition tree, we cover all transitions in the

corresponding state machine [15].

Test paths generated from the transition tree make a set of

abstract test case. To make these abstract test cases executable

test data must be generated. Test data are typically required for

parameter values of the triggers associated with transitions,

mostly based on associated guards. Test data can be generated

randomly from the possible set of values. More sophisticated

techniques such as constraint solvers [23], or search-based

techniques (for example using genetic algorithms for test data

generation [24, 25]) can also be used to guarantee firing all

triggers associated with transitions.

C. Test Case Execution and Evaluation

Constraints defined on UML state machines, such as state

invariants, guards, and pre/post conditions of triggers, should

be evaluated during the execution of the generated test cases.

As shown by many studies, this is a very effective way to

detect failures [8, 26]. These constraints are usually written as

OCL expressions in the context of UML. Examples of

available OCL evaluators are OCLE 2.0 [27], OSLO [28], IBM

OCL parser [29], and EyeOCL Software (EOS) evaluator [30].

III. CHALLENGES OF APPLYING MBT IN INDUSTRY

This section provides details on challenges we faced when

applying MBT to our industrial case study. We provide

challenges related to modeling the SUT, test case generation,

and test execution in Section A, Section B, and Section C

respectively.

A. Modeling Challenges

This section discusses challenges we faced in the modeling

phase.

1) Issues with requirements, absence of models, and lack of

MDE expertise

Modeling the behavior of a system is the main activity on

which MBT relies. In our industrial application, as in the case

for most of the companies not employing model-driven

engineering (MDE), there were no existing models of the

systems available. Consequently, there wasn’t any expertise for

modeling existed. This means that the only option to perform

MBT was to resort to requirement specifications,

implementation in the form of documentation, manuals, and

knowledge from domain experts. However, in our industrial

application, even existing requirements were incomplete and

ambiguous. To develop the models for MBT, we resorted to

looking at the documentation of implementation, manuals, and

had discussions with domain experts. Later on, to develop

expertise, we conducted several workshops to teach modeling

to testers. In addition, during modeling at least one of the

testers was involved.
2) Problems with modeling tools

An important consideration for the practical adoption of

MBT in industrial settings is the selection of an adequate

modeling tool. This is important since the models developed

are meant to support test automation. The modeling tool should

provide support to export the models in a standard format,

which can be later processed by other MDE tools (e.g., for

model transformations and OCL parsing).

3) Scalability issues for modeling non-functional behavior

Non-functional behavior such as robustness crosscuts

functional behavior and when is modeled directly with the

functional model, the complexity of the resulting model

increases enormously due to redundant modeling elements,

which are scattered across the model (e.g., repeated in each

state of the functional model). Modeling such redundant

behavior requires substantial modeling effort if not modeled

using a specialized modeling approach such as one based on

Aspect-Oriented Modeling (AOM). In our application context

for robustness testing, we defined [31] a UML profile

(AspectSM) that allows modeling UML state machine aspects

as UML state machines (aspect state machines) with the

objectives of minimizing modeling effort and the learning

curve for modeling crosscutting behavior. While the AspectSM

profile focuses on UML state machines, comparable

approaches [32-35] in the literature do not use UML extension

mechanisms and make use of specific notations for aspect-

related features that do not follow any standard. With our

industrial partners, and generally in most industrial settings, it

was necessary to provide AOM support based on the UML

standard to facilitate adoption. A detailed comparison of the

AspectSM profile with other related profiles can be found in

[31].

B. Test Case Generation Challenges

In this section, we will provide challenges we faced in the

test case generation phase.

1) Test Case Generation

As explained, our input behavioral model is a UML 2.0

state machine that allows complex structures like simple-

composite states, orthogonal states, and submachine states.

Testing can be performed directly on such state machines, but

this requires rather complex strategies, because such structures

complicate the traversal and analysis of the state machine. An

alternate approach is to flatten the state machines first, by

removing concurrency and hierarchy, and then apply a test

strategy. We implemented the latter for obtaining a better

separation of concerns and lesser analysis complexity.

Several algorithms are reported in the literature to flatten

concurrent and hierarchical state machines [15, 36]. However,

to the authors’ knowledge, these algorithms are partial and do

not provide flattening of both hierarchy and concurrency. Thus

we decided to implement our own flattening algorithm for

UML 2.0 state machines. The implemented algorithm is a

stepwise process that allows the user to modify the UML

model at several points during the transformation towards the

flattened version. More information about the flattening

algorithm can be found in [37].

In the next step, the flattened state machine is transformed

into a test tree based on the test strategy (e.g., a transition tree

for all transitions criterion). Finally, test cases are generated by

traversing the tree and outputting scripts in the preferred

language. From practical standpoints, we wanted an MBT tool

that supports standards and is extensible. Adding different

output scripting languages, test models, coverage criteria on

test models, and test data generation techniques for different

application domains and systems with the least amount of

effort are examples of useful extensions for a desirable MBT

tool.

2) Test Data Generation

Test data generation is an important component of MBT

automation. For UML models, with constraints in OCL, test

data generation is a non-trivial problem. A few approaches in

the literature exist that address this issue, but most of them

have at least one of the following issues: 1) they do not handle

important features of OCL (e.g. collections or operations on

them [38, 39]), 2) they are not scalable, 3) they lack proper tool

support [40]. This is a major limitation when it comes to the

industrial application of MBT approaches that use OCL to

specify constraints on models.

In our application context, the most challenging part for test

data generation was emulating faulty situations in the

environment to test a system’s robustness against them. A

faulty situation in the operating environment is emulated when

the properties of the environment are violated. These violations

are specified as change events (OCL constraints) on aspect

state machines (representing the robustness behavior) that lead

to faulty states. Unfortunately, some of these constraints are

complex, comprising of up to eight conjuncted clauses and

hence are very difficult to solve using existing OCL solvers.

To solve the above issues, we developed an OCL constraint

solver in Java that interacts with an existing library, an OCL

evaluator called EyeOCL Software (EOS) [41]. Our tool

implements a set of heuristics as discussed in [42] for various

expressions in OCL using EOS’s API, which are then used by

search algorithms such as genetic algorithm to guide the search

for input data that satisfy such constraints.

C. Challenges of Test Case Execution and Evaluation

In this section, we will provide challenges we faced in the

test case execution and evaluation phase.

1) Executing large test suites

The cost of test suite execution is an important factor for

applicability of MBT. In practice, system testing must be at

least partially performed on the actual hardware platform (e.g.,

with the actual sensors and actuators) or on a network

specifically configured to help controlled and systematic

testing (e.g., emulating IP traffic). This can have a large effect

on the overall cost of testing since (a) test case execution time

may be much higher than what can be expected, and (b) test

case execution may require dedicated physical resources (e.g.,

specific assigned machines and restricted-access network) of

limited availability.

For instance, running one robustness test case requires

booking a specialized testing lab and takes on average 15

minutes on a Cisco’s VCS. Therefore, applicability of MBT in

industry may depend on its flexibility in terms of the number of

test cases to execute. However, applying standard MBT criteria

on UML state machines results in test suites that are often too

expensive or time-consuming to be fully executed (not fitting

into the available test resources). This is expected to be a

problem on most industrial systems, especially when modeling

robustness along with the functional behavior.

To address this problem, we developed two test case

selection techniques: traditional coverage-based selection and a

novel similarity-based test case selection [43, 44]. Unlike

coverage-based approach, where the goal is covering more

modeling elements with the given testing budget, the

similarity-based approach maximizes the diversity between

selected test cases. In other words, the choice of test cases to

execute is optimized with respect to their pair-wise similarity,

based on the underlying assumption that similar/dissimilar test

cases most likely will detect common/distinct faults [43, 44].

2) OCL Evaluation

Constraints defined on UML state machines, such as state

invariants, guards, and pre/post conditions of triggers, should

be evaluated during the execution of the generated test cases.

As shown by many studies, this is a very effective way to

detect failures [8, 26]. These constraints are usually written as

OCL expressions in the context of UML.

In our case study, we did not have direct access to the code

of the SUT. Instead, special macros, provided by the test script

language, were used to access the state of the system. Since we

wanted our tool to be reusable in different contexts, we decided

to use an OCL evaluator that can be invoked from test scripts.

Therefore, we had to choose an evaluator that was efficient in

terms of evaluating expressions, for example that does not

require to be called several times for evaluating a single

expression. After investigating several OCL evaluators such as

OCLE 2.0 [27], OSLO [28], IBM OCL parser [29], and

EyeOCL Software (EOS) evaluator [30], we chose EOS as we

found this to be the most fitted evaluator for our requirements.

Since EOS is a Java package, to invoke methods from its

classes, we need to have access to Java from a test script. For

example, in one of our case studies, test scripts were in a

python-based scripting language. In order to access EOS from

Python, we used Jpype [45] which is an extension to Python

giving access to Java libraries through interfacing at the native

level in both virtual machines (Java and Python).

3) Environment emulation for robustness test case execution

Executing robustness test cases is expensive because it

requires setting up special equipment (hardware and/or

software-based emulators) to emulate faulty situations in the

environment. The emulators required in our current industrial

case study are targeting networks, media streams and VCS. In

our current case, we only experimented with the network

emulator because all communications between VCSs take place

via the network. It is hence important to test a VCS’s behavior

in the presence of faulty situations in the network. In our

current application, we setup network emulator (netem [46])

once and then used it for testing without any additional settings

for executing each test case.

IV. TRUST: TRANSFORMATION-BASED TOOL FOR UML-

BASED TESTING

Many commercial and academic tools (e.g., [2, 8-12] [4-7])

support modeling of UML state machines and several well-

known MBT tools have been developed in recent years, such as

TDE/UML (Siemens) [6], SpecExplorer (Microsoft) [7], IBM

Rational Functional Tester [5], and Qtronic [47]. However, in

this project, we implemented our own MBT tool called

Transformation-based Tool for UML-based Testing (TRUST),

which has been developed by the authors [37]. The main

motivation for developing TRUST was having an easily

extensible tool on which to base our research and tackle all the

Figure 1: Transformation-based Approach for TRUST

above mentioned challenges (Section 3).

TRUST accepts UML state machines containing

concurrency and hierarchy as the input model and generates

executable test cases along with oracles. It is integrated with

IBM Rationale Software Architect (RSA) [48] as modeling tool

and applies a series of model-to-model (in Kermeta [49]) and

model-to-text (in MOFScript [50]) transformation rules on the

input model to generate the final test scripts. Figure 1 illustrates

this transformation-based approach for TRUST.

TRUST, specifically dedicates one step of model-

transformation for preparing test ready models. Since in this

project, the input models (UML 2.0 state machines) had

hierarchy and concurrency, they were first flattened, to be able

to apply classic, graph-based coverage criteria [37]. The next

step is deriving abstract test cases (ATCs) from the test ready

model (flattened state machines in TRUST) according to a test

strategy, which is typically defined based on a test model and

coverage criteria (e.g., all states) to guide its traversal [37].

ATCs, like concrete test cases, contain the present state of the

SUT and its environment, the test inputs and conditions, and

the expected results, but expressed at a higher level of

abstraction. Finally, executable test cases are generated by

adding all platform dependent information to ATCs and

mapping abstract information (e.g., triggers and state variables)

of the ATC to the actual executable information (e.g. method

names and system variables) in the test script.

Model transformation languages provide the developer

direct support for navigating, creating, and manipulating a

model, based on its metamodel. Generally, the transformation

rules are relatively compact and easy to read, write, and

change. For example, adding a new feature (for example,

outputting test scripts in a new language) can be achieved by

writing a new set of transformation rules in the component that

provides the corresponding artifact, without affecting the other

components [37].

V. KEY RESULTS

A. Modeling phase

This section discusses key results related to modeling.

1) Modeling functional behavior to support functional

testing

For modeling functional behavior, the modeling process

started with two presentations by the company representatives,

followed by reading some system specification documents.

Then, we had two workshops with experts from the company to

better understand the system and domain. Afterwards, we built

the system model and at each step we validated the models,

semantically, with the help of company experts. Finally, during

the development of TRUST, the model was augmented with

many modeling details that were missed initially such as

missing parameter types of the attributes of classes and missing

connection point references on submachines.

To model the functional behavior, for each subsystem, we

modeled a class diagram to capture APIs and state variables. In

addition, we modeled one or more state machines to capture the

behavior of each subsystem. Due to confidentiality restrictions,

we do not provide details about the models of the subsystems.

However, on average each subsystem has five states and 11

transitions, with the biggest subsystem having 22 states and 63

transitions. It is important to note that, though the complexity

of an individual subsystem may not look high in terms of

number of states and transitions, all subsystems run in parallel

to each other and therefore the spaces of system states and

possible execution interleavings are very large. Saturn’s

implementation consists of more than three million lines of C

code.

2) Modeling non-functional behavior to support robustness

testing

Modeling of the robustness behavior of Saturn was

performed by the authors with the help of testers at Cisco, who

were involved in robustness testing. Before modeling, it was

important to have meetings with software engineers at Cisco to

understand the specifications of the robustness behavior

implemented in Saturn. When the specifications were

sufficiently understood, the modeling process started. The

testers themselves were involved in the modeling of the

robustness and functional behavior. The models were discussed

and revised several times during the modeling, to ensure that

the behavior is modeled completely and correctly. The

robustness modeling took around seven hours. Understanding

the specification took approximately four hours, whereas the

actual modeling took approximately three hours.

Saturn’s non-functional behavior was modeled with five

aspect class diagrams and five aspect state machines modeling

various robustness behaviors. The largest aspect state machine

specifying robustness behavior has three states and ten

transitions, which would translate into 1604 transitions in

standard UML state machines, if AspectSM was not used.

Using AspectSM, we saved more than 95% of the modeling

effort when measured by the number of modeled elements

involved in the VCS robustness behaviors (Table I). Of course,

this effort is saved at the expense of learning and applying

various stereotypes defined in AspectSM. Interested readers

may consult [51] for more details.

Additionally, we evaluated AspectSM using several

controlled experiments. In [52], we reported the results of two

controlled experiments to evaluate whether AOM can help

improve the “readability” of UML state machines in terms of

design defect identification, defect fixing, comprehension, and

inspection effort. The results show that the defect identification

and defect fixing rates of aspect state machines are

significantly higher than the ones for the hierarchical and flat

state machines. On average, we observed increases of 28% in

the defect identification rates and 19% for defect fixing

respectively, when compared to standard UML state machines

(Table I). There were no significant differences observed for

effort and comprehension between aspect state machines and

standard UML state machines.

In [53], we assessed conformance error rates of applying

AspectSM from different perspectives by conducting modeling

activities such as: 1) identifying modeling defects, 2)

comprehending state machines, and 3) modeling crosscutting

behaviors. Results show that for most of the activities, the

participants, who were given treatment, AspectSM achieved

significantly lower error rates than the ones given standard

UML state machines as summarized in Table I.
Table I. Summary of key results for non-functional modeling

* Inc: Increase, Dec: Decrease, -: no differences

Property Percentage

(Inc/Dec)*

1 Modeling effort 95% (Dec)

2 Readability Defect Identification 28% (Inc)

 Defect Fixing 19% (Inc)

 Effort -

3 Comprehension -

4 Modeling
Errors

Inspecting Models 59% (Dec)

 Comprehension Errors -

 Modeling crosscutting behaviors 14% (Dec)

5 Applying

AspectSM

Completeness 14% (Inc)

 Correctness 13% (Inc)

 Redundancy 16% Dec)

 Effort 56% (Inc)

In [54], we reported an experiment that was conducted to

evaluate the “applicability” of AspectSM. We looked at

applicability from two aspects: the quality of derived state

machines in terms of completeness, correctness, and

redundancy, and modeling effort. Results show that the

completeness and correctness of aspect state machines are

significantly higher than for standard state machines modeling

on the same set of crosscutting behaviors (14% and 13%

respectively). Furthermore, the redundancy in aspect state

machines is significantly less (16%) than that for standard

UML state machines. However, aspect state machines took

significantly more time as compared to standard UML state

machines (on average 56% more time as shown in Table I).

B. Test Case Generation phase

1) Test case generation

We have implemented several standard test strategies such

as state-coverage, transition coverage, all round trip paths, and

length N paths [37]. As an example, in one of our case studies

the input model is a three-level hierarchical state machine

consists of four submachine states. The flattened version of the

state machine consists of 11 states and 70 transitions. Using an

all-transition coverage, TRUST generated 59 abstract test

cases.

Currently, TRUST can output concrete test cases in two

languages C++ and Python. However, both test strategies and

output languages are easily extensible by adding new set of

transformation rules in TRUST.

2) Test data results

We compared our search-based test generator with one

well-known, freely available OCL solver (UMLtoCSP) [41].

We ran our set of constraints with UMLtoCSP. The results

showed that, even after running UMLtoCSP for 10 hours, no

solutions could be found for most of the constraints. The reason

is that the existing OCL solvers require the conversion of OCL

to lower-level languages such as a Satisfiability (SAT) formula

[55] or a Constraint Solving Problem (CSP) [41] instance and

hence can easily result in combinatorial explosion as the

complexity of the model and constraints increase (as discussed

in [41]). For industrial scale systems, as in our case, this is a

major limitation, since the models and constraints are generally

quite complex. Hence, existing techniques based on conversion

to lower-level languages seem impractical in the context of

large scale, real-world systems. In contrast, our solver managed

to solve the same constraints in 3.8 minutes on average [42] on

a regular PC. This gives empirical evidence that it is possible to

quickly and directly solve complex industrial constraints

written in a high-level language such as OCL, and hence

efficiently emulates faulty situations in the operating

environment for robustness testing purposes. More details on

the empirical evaluations, we conducted, can be found in [42].

C. Test Case Execution and Evaluation phase

This section provides key results related to test case

execution and evaluation.

1) Executing large test suites

In [43, 44] we report a comprehensive comparison between

different test case selection techniques for MBT and show that

using the proposed similarity-based selection in TRUST leads

to very large savings in terms of the number of test cases that

do not need to be executed. Table II shows a typical example of

the type of improvement that we achieve in reducing the test

execution cost. As we can see, the mean fault detection rate

(percentages of detectable faults by the entire test suite that is

detected by executing a selected subset of the test suite) of our

similarity-based selection reaches 100% with only 40 abstract

test cases (around 14% of the test suite). However, the two

other alternatives (random selection and the best existing

approach, which is a coverage-based test case selection

technique) cannot reach 100% even with 140 abstract test cases

(half of the test suite). Looking at the fault detection rates,

especially for smaller test selection sizes, our approach

provides significant improvements over both coverage-based

and the random selection. More details about the cost-

effectiveness analysis of different test case selections for MBT

can be found in [31].

2) Robustness test case execution

For our current case (network-related robustness testing of

Saturn), the execution of test cases found one robustness fault

(halt and restart) in Saturn, when more than 10% duplicate

packets were introduced in network communication. Our

Table II. The percentages of detectable faults by the entire test suite (281 test cases) that is detected by executing a selected subset of the test suite (10 to 140 test

cases). The subsets are selected using random selection, a state of the art coverage-based, and a newly proposed similarity-based test case selection.

Test case selection
Number of test cases executed

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Random selection 29% 40% 50% 57% 63% 69% 73% 78% 81% 84% 85% 89% 91% 93%

Coverage-based
selection

46% 59% 82% 84% 86% 87% 89% 90% 91% 92% 94% 95% 95% 95%

Similarity-based
selection

59% 84% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

approach had more chances to catch this fault compared to

existing practices at Cisco. Since MBT is more systematic and

is in our case specifically tailored to catch robustness faults.

Our approach indeed focuses on automatically testing the

robustness of Saturn over various functional scenarios in the

presence of several faulty situations in the network. In contrast,

current robustness testing of Saturn is based on scripts written

manually by testers to test a few network properties over a few

of functional scenarios.

VI. LESSONS LEARNED

In this section, we present lessons learnt during modeling

(Section A), test case generation (Section B), and test case

execution (Section C), while applying MBT on Saturn VCS at

Cisco System, Norway.

A. Modeling phase

This section presents lessons learnt while modeling

functional and robustness behavior to support MBT.

1) Lesson 1: Make models precise, correct, and complete

We experienced that the precise, correct, and complete

modeling is absolutely necessary for executable test case

generation from models. In our case study, our focus was on

precise and complete behavioral modeling of complex

industrial systems using standard UML 2.0 state machines.

During test case generation, we found several modeling

elements that we unintentionally forgot to model and those

were revealed when we tried to generate executable test cases

using TRUST. A good test case generation tool must have

support to report any syntactic errors (e.g. a state without any

incoming or outgoing transitions) and any missing information

(e.g. missing state invariant), which is required for test case

generation.

Making semantically correct models, however, is not a

trivial task and requires that the UML specification and domain

be carefully studied. Even though constructs like concurrency

and hierarchy are supposed to ease the understandability of

large state machines, such constructs may actually confuse the

developer. In particular, we experienced that concurrency, if

not carefully applied, could introduce modeling errors in

practice. For example, concurrent regions sometimes make it

difficult to see the set of transitions between state

combinations. A typical fault is that a guard is missing on a

transition, which allows for transitions to state combinations

that are illegal targets from particular source states. However,

we found that it helped to inspect the flattened state machine to

detect such mistakes.

2) Lesson 2: Select a standard modeling notation based on

your needs

Selecting a proper notation for modeling the SUT’s

behavior is an important decision to make. In all our industrial

applications, we selected UML due to the following reasons: (i)

it is a modeling standard; (ii) it has industrial strength tool

support, both open source (e.g., Papyrus) and commercial (e.g.,

IBM RSA); (iii) it has sufficient training material available to

help train the final users in the company applying MBT; (iv) it

provides a rich set of notations to model a system from

different perspectives; (v) it is extensible for various

application domains, for instance, we extended UML state

machines using its profiling mechanisms to model aspect state

machines.

Despite the above-mentioned advantages, UML is still a

challenge to apply in industrial settings, without clear

objectives and a well-defined methodology. UML is a general

purpose, standard modeling language that is meant to cater for

different application domain and problems, and is, as a result,

quite large. The entire language is not meant to be used to solve

a particular problem in a particular domain. Therefore one of

the key requirements to make UML successful in industry is to

select a proper subset of the language matching the needs. In

our projects, we selected UML class diagram to capture the

structure of a VCS including state variables and APIs. For

modeling behavior, we selected UML state machines as VCSs

exhibit state-based behavior.

3) Lesson 3: Select the modeling tool carefully

Selecting an appropriate modeling tool is very critical for

the adoption of MBT in an industry. In our case study, we

experimented with IBM RSA and Papyrus UML since they are

EMF-based [56] and hence can be used with other EMF based

tools (e.g., Kermeta for model transformations). For Papyrus

UML, we faced serious usability problems in modeling state

machines, since most of the user interface of the tool is based

on the assumption that the modeler is aware of the underlying

UML metamodel. IBM RSA comes with a high price tag to be

used in small to medium sized companies. Overall, we found

IBM RSA is the most viable modeling tool in terms of usability

and its interoperability with third party Model-Driven

Engineering tools (such as model transformation tools).

B. Test Case Generation phase

This section presents lessons learnt during the test case

generation phase.

1) Lesson 1: Use an extensible and standard-supporting

approach and tool for test case generation

Our search for MBT tools showed that all of them have at

least one of the following drawbacks:

 They do not support well-established standards for

modeling the SUT. This makes it difficult to integrate

MBT with the rest of the development process, which

in turn makes the adaptation and the use of MBT more

costly.

 They cannot be easily customized to different needs and

contexts. For example, one may need to model and test

non-functional requirements. Or a tester may want to

experiment with customized test strategies to help

target specific kinds of faults.

Thus, we developed TRUST, whose software architecture

and implementation strategy facilitate its customization to

different contexts by supporting extensible features such as

input models, test models, coverage criteria, test data

generation strategies, and test script languages [37].

2) Lesson 2: Model transformations as a way to enable

extensible MBT

To make a standard-supporting and extensible tool, model

transformation is used in TRUST for implementing model-to-

model and model-to-text transformations [57]. We found this

approach very well-suited for developing TRUST because of

the separation of concerns provided by its well-defined

components-based implementation [37].

3) Lesson 3: Experiences with model transformation

languages

We experimented with two different model-to-model

transformation languages: Kermeta [49] and ATL [32].

Compared to declarative model-to-model transformation

languages such as ATL, we found Kermeta to be highly

appropriate for flattening UML state machines. In addition to

being an object-oriented language, it allows you to add

behavior to the metamodel through aspect weaving. With ATL,

we faced serious problems while transforming large models.

Whenever, the size of models increases, ATL being a

declarative language requires more memory to process models

and hence results in out of memory errors.

For model-to-text transformations, we used MOFScript

[50], which is powerful and easy to use. MOFScript is quite

similar to programming languages like Java, and provides

powerful features that are easy to use for querying models,

outputting text, and accessing external Java libraries. We didn’t

face a lot of challenges while working with MOFScript,

although, we did have issues in converting MOFScript objects

into Java objects, while integrating Java with MOFScript for

the purpose of accessing OCL evaluators implemented in Java.

C. Test Case Execution and Evaluation phase

This section presents lessons learnt during the test case

execution and evaluation phase.

1) Lesson 1: Be adjustable with respect to the testing

budgets

Execution and evaluation of test cases generated by an

MBT tool may require time and resources beyond the testing

budgets assigned for the testing task. Therefore, to make the

test execution and evaluation affordable, MBT tools must

provide proper test selection/prioritization. Our experiments

[31] provide some evidence that similarity-based test case

selection is a good candidate for MBT test case selection.

2) Lesson 2: Environment emulation a bottleneck for

robustness testing

Executing robustness test cases is expensive because it

requires setting up special equipment (hardware and/or

software-based emulators) to emulate faulty situations in the

environment. The emulators required in our current industrial

case study are targeting networks, media streams and VCS. In

our case, we only experimented with the network emulator

because all communications between VCSs takes place via the

network. It is hence important to test a VCS’s behavior in the

presence of faulty situations in the network. In our current

application, we setup network emulator (netem [46]) once and

then used it for testing without any additional settings for

executing each test case.

3) Lesson 3: Selecting an appropriate OCL evaluator for

test data generation and test oracles

Checking state invariants written as OCL constraints during

test case execution provides automated oracles. In our case, we

used EOS [58] for evaluation. In addition, for test data

generation, i.e., to solve guards and emulate faulty environment

conditions, we used again EOS for parsing and evaluating OCL

expressions. We experienced that EOS is one of the most

efficient OCL evaluators and provides a very simple API to

evaluate and parse OCL expressions. In our experience, the

only major downside of EOS is that, to evaluate/parse OCL

expressions, EOS requires class and/or object diagrams to be

loaded into its memory in a specific format. To facilitate this,

we wrote a MOFScript transformation that takes the UML class

diagram (modeling state variables, method calls, and signal

receptions of the SUT) as input and generates a Java wrapper

class that includes a set of EOS method calls for making class

and object diagrams.

During test case generation, we solve the constraints on the

environment properties to emulate faulty situations in the

environment using EOS and search algorithms. Another issue

when solving an OCL constraint using a search algorithm is

that it requires evaluating the OCL expression many times, and

hence the speed of constraint solving depends on the efficiency

of the selected OCL evaluator. Recall from Section IV that our

TRUST testing tool is extensible in such a way that any other

OCL evaluator and parser (more efficient) can be easily

replaced with EOS, if required.

VII. RELATED WORK

Several initiatives have been taken to assess the

applicability of model-based testing techniques into industry.

For instance, one notable project in this regard is the D-Mint

project [59], which was an Information Technology for

European Advancement (ITEA) 2 project on Deployment of

Model-Based Technologies to Industrial Testing (D-Mint). The

project involved several industrial and academic partners from

several European countries including Estonia, Finland, France,

Germany, and Spain. Some of the experiences reported in this

paper are a part of participation in the D-Mint project (2007-

2009) as a volunteer partner from Norway involving Simula

Research Lab as an academic partner and Cisco (Tandberg AS.

at the time) as an industrial partner.

Some of our experiences of applying model-based

robustness testing (MBRT) have already been reported in [60],

where we explained how we developed and integrated various

techniques and tools to achieve a fully automated MBRT that

was able to detect previously uncaught software faults in

Cisco’s Video Conferencing System. The work presented in

this paper, however, is a more comprehensive report which

covers all aspects of model-based testing activities at Cisco

including MBRT, functional testing, and test case selection

since 2007.

Several industrial experiences of applying MBT have been

reported in the literature. In [61], industrial experiences of

MBT are reported from a project called Automated Generation

and Execution of Test Suites in Distributed Component-based

Software (AGEDIS). Five industrial case studies (Two at

French Telecom, one at Intrasoft, and three at IBM) were

conducted on real MBT problems. Based on these applications,

the following experiences were reported: 1) Modeling

improves understanding of a SUT and helps in locating

inconsistences; 2) Modeling provided a good communication

mechanism; 3) Test case generation based on input and output

coverage were shown to be better than full space coverage

resulting in combinatorial explosion.

Another experience report of MBT is reported in [62] for

testing of Wireless Application Protocol (WAP) gateway

developed by Ericsson. The developed techniques and tools

have industrial strength and successfully managed to find

several conformance errors between the models and the real

system implementation. In [63], Conformiq’s Qtronic [47] and

Microsoft’s SpecExplorer [64] were applied to case studies

from Siemens Healthcare domain. Both tools were evaluated

based on different criteria to ensure quality of healthcare

systems. Results showed that both tools are useful for industrial

applications. However, it was concluded that Qtronic is better

for systems whose implementations are based on asynchronous

message exchange. SpecExplorer on the other hand is more

suitable for reactive object-oriented system. According to [65],

even though MBT has been used intensively in academia and

industry, a rich body of experiences for MBT is still not

published.

This paper adds up an additional experience of industrial

application of MBT in the current body of evidence. Though,

our experiences on the model transformation-based MBT

implementation, non-functional MBT, and a search-based test

generation and selection for MBT is novel and not considered

in the other reports. Nonetheless, our experiences of MBT

reported in this paper complement the findings of other

reported experiences of MBT.

VIII. CONCLUSION

Model-based Testing (MBT) has seen an increasing interest

in the industry and such interest has led to rise of a large

number of MBT approaches and tools. This is due to the fact

that benefits of MBT such as support of automation, being

rigorous, and facilitation of defining specialized test strategies,

have been widely realized by the industry. Application of MBT

to an industrial setting always varies and provides useful

insights into MBT practices depending on the application

domain, type of testing targeted, and current testing focus.

Collecting experiences and lessons learnt from such industrial

applications can always guide other practitioners to learn from

these and use them as guidelines for future applications.

With the above objective in mind, we reported our

experiences of applying MBT for functional and robustness

testing at Cisco Systems, Inc. Norway, for testing embedded

Video Conferencing Systems (VCSs). We reported challenges

of modeling VCS, test case generation from the models of the

VCS, and finally execution of the generated test cases.

Moreover, we provide a quick review of our novel solutions to

these challenges along with the key results. Finally, we provide

lessons learnt, which serve as guidelines for future industrial

applications of MBT. At a high level, our experiences revealed

that Aspect-Oriented Modeling provides a scalable modeling

solution to robustness testing. We further conclude that search

algorithms are efficient mechanism for defining sophisticated

and cost-effective test selection strategies and also for

efficiently solving complicated constraints for test data

generation. Finally, model transformations provide an efficient

and extensible solution for developing a model-based test case

generation tool.

IX. ACKNOWLEDGEMENT

We are grateful to Cisco Systems Inc. Norway for the

collaboration. However, the findings and opinions expressed in

this paper are those of the authors and do not necessarily

represent or reflect those of Cisco and/or its subsidiaries and

affiliates. Moreover, our results do not in any way reflect the

quality of Cisco’s software products.

REFERENCES

[1] S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A
Systematic Review of the Application and Empirical Investigation of Search-

based Test-Case Generation," IEEE Transactions on Software Engineering,

vol. 36, pp. 742-762, 2010.
[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach: Morgan-Kaufmann, 2006.

[3] T. S. Chow, "Testing Software Design Modeled by Finite-State
Machines," IEEE Transactions on Software Engineering, vol. 4, pp. 178-187,

1978.
[4] D-MINT, Deployment of Model-Based Technologies to Industrial Testing.

Available: http://www.d-mint.org/ (September 2009), Accessed: April, 2012

[5] J. Feldstein. (2005, Model-based Testing using IBM Rational Functional
Tester.

[6] M. Vieira, X. Song, G. Matos, S. Storck, R. Tanikella, and B. Hasling,

"Applying Model-Based Testing to Healthcare Products: Preliminary
Experiences," in Proceedings of the 30th International Conference on

Software Engineering, Leipzig, Germany, 2008.

[7] Y. Gurevich, W. Schulte, N. Tillmann, and M. Veanes, "Model-based
Testing with SpecExplorer," Microsoft research2009.

[8] L. C. Briand and Y. Labiche, "A UML-Based Approach to System

Testing," in Proceedings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools, 2001.

[9] I. K. El-Far and J. A. Whittaker, "Model-Based Software Testing,"

Encyclopedia of Software Engineering (edited by J. J. Marciniak), Wiley,
2001.

[10] S. Ali, L. C. Briand, M. J. Rehman, H. Asghar, M. Z. Z. Iqbal, and A.

Nadeem, "A State-Based Approach to Integration Testing Based on UML
Models," Information and Software Technology, vol. 49, pp. 1087-1106, 2007.

[11] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, "A

Survey on Model-based Testing Approaches: A Systematic Review," in
Proceedings of the 1st ACM International Workshop on Empirical Assessment

of Software Engineering Languages and Technologies, Atlanta, Georgia,

2007.
[12] D. Drusinsky, Modeling and Verification using UML Statecharts: A

Working Guide to Reactive System Design, Runtime Monitoring and

Execution-based Model Checking, 1st ed.: Newnes, 2006.
[13] AMOS: Automated Model-based Testing of State-driven Systems.

Available: http://simula.no/research/approve/projects/amos, Accessed: April,

2012
[14] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach: Morgan-Kaufmann, 2007.

[15] R. V. Binder, Testing object-oriented systems: models, patterns, and
tools: Addison-Wesley Longman Publishing Co., Inc., 1999.

[16] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A

Systematic Review of the Application and Empirical Investigation of Search-
based Test-Case Generation," Accepted for publication in IEEE Transactions

on Software Engineering, Special issue on Search-Based Software

Engineering (SBSE), 2009.
[17] L. Lavagno, G. Martin, and B. V. Selic, UML for Real: Design of

Embedded Real-Time Systems: Springer, 2003.

http://www.d-mint.org/
http://simula.no/research/approve/projects/amos

[18] T. Weigert and R. Reed, "Specifying Telecommunications Systems with

UML," in UML for Real: Design of Embedded Real-time Systems, ed: Kluwer
Academic Publishers, 2003, pp. 301-322.

[19] S. Sauer and G. Engels, "UML-based Behavior Specification of

Interactive Multimedia Applications," in Proceedings of the IEEE 2001
Symposia on Human Centric Computing Languages and Environments

(HCC'01), 2001.

[20] T. Pender, UML Bible: Wiley, 2003.
[21] "Papyrus," ed.

[22] "IBM Rational Software Architect," ed.

[23] J. Zhang, C. Xu, and X. Wang, "Path-Oriented Test Data Generation
Using Symbolic Execution and Constraint Solving Techniques," presented at

the Second International Conference on Software Engineering and Formal

Methods (SEFM'04), 2004.
[24] R. Lefticaru and F. Ipate, "Automatic State-Based Test Generation Using

Genetic Algorithms," in Ninth International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, 2008.
[25] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, "A Search-Based OCL

Constraint Solver for Model-Based Test Data Generation," presented at the

11th International Conference on Quality Software (QSIC), 2011.
[26] L. C. Briand, M. D. Penta, and Y. Labiche, "Assessing and Improving

State-Based Class Testing: A Series of Experiments," IEEE Transactions on

Software Engineering, vol. 30, pp. 770-793, 2004.
[27] D. Chiorean, M. Bortes, D. Corutiu, C. Botiza, and A. Cârcu, "OCLE,"

V2.0 ed.

[28] C. Hein, T. Ritter, and M. Wagner, "Open Source Library for OCL,"
2009.

[29] IBM OCL Parser. Available: http://www-
01.ibm.com/software/awdtools/library/standards/ocl-download.html

(September 2009), Accessed: April, 2012

[30] M. Egea, "EyeOCL Software," ed.
[31] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior

Using Aspect-Oriented Modeling to Support Robustness Testing of Industrial

Systems," Systems and Software Modeling (SOSYM) Journal 2011.
[32] J. Zhang, T. Cottenier, A. V. D. Berg, and J. Gray, "Aspect Composition

in the Motorola Aspect-Oriented Modeling Weaver," Journal of Object

Technology, vol. 6, 2007.
[33] G. Zhang, M. M. Hölzl, and A. Knapp, "Enhancing UML State Machines

with Aspects," in In Proceedings of the 10th International Conference on

Model Driven Engineering Languages and Systems (MoDELS), 2007.
[34] G. Zhang, "Towards Aspect-Oriented State Machines," presented at the

2nd Asian Workshop on Aspect-Oriented Software Development

(AOASIA'06), Tokyo, 2006.
[35] D. Xu, W. Xu, and K. Nygard, "A State-Based Approach to Testing

Aspect-Oriented Programs," presented at the 17th International Conference on

Software Engineering and Knowledge Engineering, Taiwan, 2005.
[36] T. Jussila, J. Dubrovin, T. Junttila, T. L. Latvala, and I. Porres, "Model

Checking Dynamic and Hierarchical UML State Machines," in Proceedings of

the 3rd Workshop on Model Design and Validation (MoDeVa06), 2006.
[37] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. C. Briand, "Model

Transformations as a Strategy to Automate Model-Based Testing - A Tool and

Industrial Case Studies," Simula Research Laboratory, Technical Report
(2010-01)2010.

[38] L. v. Aertryck and T. Jensen, "UML-Casting: Test synthesis from UML

models using constraint resolution," presented at the Approches Formelles
dans l'Assistance au Développement de Logiciels (AFADL'2003), 2003.

[39] M. Benattou, J. Bruel, and N. Hameurlain, "Generating test data from

OCL specification," 2002.
[40] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y. Hong, "Test case automate

generation from uml sequence diagram and ocl expression," presented at the

International Conference on cimputational Intelligence and Security, 2007.
[41] J. Cabot, R. Claris, and D. Riera, "Verification of UML/OCL Class

Diagrams using Constraint Programming," presented at the Proceedings of the

2008 IEEE International Conference on Software Testing Verification and
Validation Workshop, 2008.

[42] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, "A Search-based OCL

Constraint Solver for Model-based Test Data Generation," presented at the
Proceedings of the 11th International Conference On Quality Software (QSIC

2011), 2011.

[43] H. Hemmati, A. Arcuri, and L. Briand, "Achieving Scalable Model-

Based Testing Through Test Case Diversity," ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 22, 2012.

[44] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced Test Case

Selection Approach for Model-Based Testing: An Industrial Case Study," in
18th ACM SIGSOFT international symposium on Foundations of Software

Engineering (FSE), 2010.

[45] S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter, "Does aspect-
oriented programming increase the development speed for crosscutting code?

An empirical study," presented at the 2009 3rd International Symposium on

Empirical Software Engineering and Measurement, 2009.
[46] "netem," ed, 2011.

[47] QTRONIC. Available: http://www.conformiq.com/qtronic.php, Accessed:

April, 2012
[48] IBM Rational Software Architect. Available:

http://www.ibm.com/software/awdtools/architect/swarchitect/, Accessed:

April, 2012
[49] Kermeta - Breathe Life into Your Metamodels. Available:

http://www.kermeta.org/, Accessed: April, 2012

[50] MOFScript Home page. Available:
http://www.eclipse.org/gmt/mofscript/ (September 2009), Accessed: April,

2012

[51] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior
Using Aspect-Oriented Modeling to Support Robustness Testing of Industrial

Systems," Simula Research Laboratory, Technical Report (2010-03)2010.

[52] S. Ali, T. Yue, L. C. Briand, and Z. I. Malik, "Does Aspect-Oriented
Modeling Help Improve the Readability of UML State Machines?," Under

consideration for a publication in a Journal, 2011.
[53] S. Ali and T. Yue, "Comprehensively Evaluating Conformance Error

Rates of Applying Aspect State Machines for Robustness Testing," presented

at the International Conference on Aspect-Oriented Software Development
(AOSD 2012), 2012.

[54] S. Ali, T. Yue, and L. C. Briand, "Empirically Evaluating the Impact of

Applying Aspect State Machines on Modeling Quality and Effort " Simula
Research Laboratory, Technical Report (2011-06)2011.

[55] M. Krieger and A. Knapp, "Executing Underspecified OCL Operation

Contracts with a SAT Solver," presented at the 8th International Workshop on
OCL Concepts and Tools., 2008.

[56] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse

Modeling Framework: Addison-Wesley Professional, 2008.
[57] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven

Architecture: Practice and Promise Addison Wesley, 2003.

[58] M. Egea, "EyeOCL Software," ed, 2010.
[59] D-Mint Project. Available:

http://www.itea2.org/project/index/view/?project=179, Accessed: April, 2012

[60] S. Ali, L. Briand, A. Arcuri, and S. Walawege, "An Industrial
Application of Robustness Testing using Aspect-Oriented Modeling,

UML/MARTE, and Search Algorithms," in ACM/IEEE 14th International

Conference on Model Driven Engineering Languages and Systems (Models
2011), 2011, pp. 108-122.

[61] A. Hartman and K. Nagin, "The AGEDIS tools for model based testing,"

presented at the Proceedings of the 2004 international conference on UML
Modeling Languages and Applications, Lisbon, Portugal, 2005.

[62] A. Hessel and P. Pettersson, "Model-based testing of a WAP gateway: an

industrial case-study," presented at the Proceedings of the 11th international
workshop, FMICS 2006 and 5th international workshop, PDMC conference

on Formal methods: Applications and technology, Bonn, Germany, 2007.

[63] M. Sarma, P. V. R. Murthy, S. Jell, and A. Ulrich, "Model-based testing
in industry: a case study with two MBT tools," presented at the Proceedings of

the 5th Workshop on Automation of Software Test, Cape Town, South Africa,

2010.
[64] SpecExplorer. Available: http://research.microsoft.com/en-

us/projects/specexplorer/, Accessed: April, 2012

[65] A. D. Neto, R. Subramanyan, M. Vieira, G. H. Travassos, and F. Shull,
"Improving Evidence about Software Technologies: A Look at Model-Based

Testing," IEEE Softw., vol. 25, pp. 10-13, 2008.

http://www-01.ibm.com/software/awdtools/library/standards/ocl-download.html
http://www-01.ibm.com/software/awdtools/library/standards/ocl-download.html
http://www.conformiq.com/qtronic.php
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://www.kermeta.org/
http://www.eclipse.org/gmt/mofscript/
http://www.itea2.org/project/index/view/?project=179
http://research.microsoft.com/en-us/projects/specexplorer/
http://research.microsoft.com/en-us/projects/specexplorer/

