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Abstract— Model-Based Testing (MBT) is a well-established 

and intense field of research in academia. It has attracted 

attention of many industries as it can be seen from many 

industrial experiences of MBT reported in the literature and 

availability of commercial and open source tools in recent years. 

The thorough and methodical approach of MBT facilitates 

automated testing with the intention of improving the quality of 

software systems. Every industrial application of MBT faces 

varied challenges depending on the application domain, the 

current testing practices and tools, and the type of testing. 

Reporting such challenges, their solutions, and lessons learnt 

provides a body of knowledge, which can direct practitioners of 

MBT for their future applications of MBT. With such aim in our 

mind, we present results from an MBT project that is being 

carried out for testing embedded video conferencing systems 

developed by Cisco Systems, Inc. Norway for the last several 

years. We present challenges faced while conducting MBT, our 

solutions, some of the key results, and lessons learnt from our 

experience. Our experience showed that search algorithms 

provide an efficient solution for test case selection and test data 

generation. In addition, aspect-oriented modeling provides a 

scalable modeling solution for non-functional testing. Finally, we 

learned that model transformation offers an elegant solution for 

developing a model-based test case generation tool. All of our 

results are based on a large number of rigorous empirical 

evaluations. 

Index Terms— Model-based Testing, Industrial Applications, 

Test Data Generation, Test Case Selection, Model 

Transformation, Search Algorithms, Aspect-Oriented Modeling 

I. INTRODUCTION 

Software is being incorporated into an ever-increasing 

number of systems including embedded and safety critical 

systems, and hence it is becoming increasingly important to 

thoroughly test these systems. One challenge in software 

testing is the effort involved in creating and evaluating a test 

suite that will systematically test the system and reveal latent 

faults in an effective manner [1]. Model-Based Testing (MBT) 

supports rigorous, systematic, and automated testing, which 

eventually reduces the number of faults in the delivered 

software systems and thus improves their quality. MBT in a 

nutshell is an automated approach for deriving the test cases 

from a behavioral model of a system and evaluating the test 

cases against the requirements specified in the model [2, 3]. 

MBT is a well-established field and has got a lot of attention in 

the recent years both in industry [4-7] and academia [2, 8-12]. 

A general process of MBT is the same for any of its 

applications regardless of industry or academia, i.e., modeling a 

System Under Test (SUT), transforming models of the SUT 

into a test model, and finally generating executable test cases 

from the test model based on a coverage criterion. However, 

applying MBT to a new industrial application always faces new 

challenges because of the industry-specific testing practices, 

expertise, tools, and type of SUTs. Reporting these challenges 

always provide a different perspective on MBT with which 

other practitioners applying MBT to an industrial application 

can benefit.   

With the above aim in mind, in this paper, we report our 

experiences of applying MBT to testing of Video Conferencing 

Systems (VCSs) developed by Cisco Systems, Inc. Norway. 

For almost five years, we are involved in various model-based 

test cases generation activities (more specifically functional 

system testing and robustness testing) at Cisco Systems, 

Norway. In 2007, a team of two PhD students and two senior 

researchers from Simula Research Laboratory in Norway 

initiated a project [13] with Tandberg AS, a world-leading 

company in manufacturing VCSs which is later on bought by 

Cisco Systems in 2010. The system under study in this project 

is a VCS, called Saturn, with 20 subsystems and more than 

three million lines of C code. The core functionality of Saturn 

is to manage sending and receiving of multimedia streams. The 

audio and video signals of a call are sent through separate 

channels and there is also a possibility of transmitting 

presentations in parallel with audio and video. Presentations 

can be sent only by one conference participant at a time and all 

others receive it.  

The high-level goal of this collaboration was to increase 

cost-effectiveness of black-box system-level testing of the 

VCSs (both functional and non-functional) by means of 

systematic test automation. The strategy taken by the research 

team was MBT, since it systematically provides automation in 

both test generation and evaluation phases. During this ongoing 

project, all the 20 subsystems of Saturn were modeled, using 

UML and its extensions, by our research team with the help of 

domain experts from the company. Specifically, one of the 20 

subsystems, which is responsible for the core functionality of 

Saturn, is tested using MBT against both functional and some 

robustness requirements (unfortunately, we cannot report 



details on the code of the SUT, due to confidentiality 

restrictions). 

To enable automation of these types of testing, several sub-

problems need to be solved including: selection of modeling 

notations and tools, defining test models and coverage criteria, 

test data generation, test selection strategies, and test case 

generation tool. For each of these sub-problems, we report the 

challenges we faced, our solutions with key results, and lessons 

learnt from these experiments. These lessons learnt provide 

useful insights to practitioners of MBT, who can benefit from 

these while applying MBT in their context. The main 

contributions of this paper are as follows:  

1) We provide an overview of the entire process of MBT 

applied on an industrial setting. 

2) We discuss the challenges of applying MBT on a 

typical industrial system. 

3) We report our approaches to handle the challenges 

and summarize some of the results. 

4) We summarize our lessons learned which can be used 

as a set of guidelines to practitioners or researchers for 

applying MBT in industry.  

The rest of the paper is organized as follows: Section II 

provides a quick background on MBT. Section III discusses 

challenges we faced when applying MBT, Section IV gives an 

overview of our test case generation tool, Section V provides 

key results, and Section VI summarizes the lessons learnt from 

our experiments. We review some of related MBT industrial 

experiences in Section VII. Finally, we conclude our paper in 

Section VIII.  

II.  BACKGROUND: MODEL-BASED TESTING 

Model-based testing (MBT) is defined as “the generation of 

executable test cases from behavioral model of the system 

under test” [14]. A test case specifies the present state of the 

SUT and its environment, the test inputs and conditions, and 

oracle information [14, 15]. An example of a test input is a 

sequence of functions or method calls and their input 

parameters. Oracle information identifies properties that should 

be true after the execution of the test case. Several strategies 

can be considered to implement efficient oracles [14, 15]. 

The general process of MBT that we use in this paper starts 

with modeling the SUT and making it ready for test generation. 

The next step is deriving abstract test cases from the test ready 

models according to a test strategy. The test strategy is 

typically defined based on a test model and coverage criteria to 

guide its traversal [16]. In the next step, executable test cases 

are generated using abstract test cases and input test data. 

Finally, all or part of the generated test suite is executed and 

evaluated based on the expected results represented in the input 

models. Therefore, we divide the MBT process in three phases:   

A. Modeling a SUT 

The choice of modeling techniques and notations depends 

heavily on the SUT domain and testing objectives. In our case 

studies, we apply MBT on embedded real-time systems for 

system-level testing. Embedded real-time systems [17], along 

with systems of many other domains such as 

telecommunication systems [3, 18] and multimedia systems 

[19], exhibit state-driven behavior. Therefore, to model such 

behavior, UML state machines, which are extensions of 

traditional Finite State Machines (FSM), can be used. 

Traditional FSMs cannot model software systems with 

concurrent behavior. Concurrency in UML state machines is 

modeled using composite states with two or more regions [20]. 

When modeling complex software systems with FSMs, the 

number of states and transitions can grow exponentially with 

system size. This can be handled by UML state machine 

features for modeling submachines. Many tools (e.g., [21, 22]) 

support the modeling of UML state machines.   

B. Test Case Generation 

To apply MBT on UML state machine, as the input model, 

several test strategies are presented in the literature, such as 

piecewise, all transitions, all transitions k-tuples, all round-trip 

paths, M-length signature, and exhaustive coverage [15]. For 

example, the all transitions strategy requires that all transitions 

in a state machine must be covered. To cover all transitions, a 

test tree (consisting of nodes and edges corresponding to states 

and transitions in a state machine) is constructed by breath-

first/depth-first traversal of the state machine. The constructed 

test tree is called a transition tree. Now, by traversing all paths 

in the transition tree, we cover all transitions in the 

corresponding state machine [15].  

Test paths generated from the transition tree make a set of 

abstract test case. To make these abstract test cases executable 

test data must be generated. Test data are typically required for 

parameter values of the triggers associated with transitions, 

mostly based on associated guards. Test data can be generated 

randomly from the possible set of values. More sophisticated 

techniques such as constraint solvers [23], or search-based 

techniques (for example using genetic algorithms for test data 

generation [24, 25]) can also be used to guarantee firing all 

triggers associated with transitions. 

C. Test Case Execution and Evaluation 

Constraints defined on UML state machines, such as state 

invariants, guards, and pre/post conditions of triggers, should 

be evaluated during the execution of the generated test cases. 

As shown by many studies, this is a very effective way to 

detect failures [8, 26]. These constraints are usually written as 

OCL expressions in the context of UML. Examples of 

available OCL evaluators are OCLE 2.0 [27], OSLO [28], IBM 

OCL parser [29], and EyeOCL Software (EOS) evaluator [30]. 

III. CHALLENGES OF APPLYING MBT IN INDUSTRY 

This section provides details on challenges we faced when 

applying MBT to our industrial case study. We provide 

challenges related to modeling the SUT, test case generation, 

and test execution in Section A, Section B, and Section C 

respectively.  

A. Modeling Challenges 

This section discusses challenges we faced in the modeling 

phase. 



1) Issues with requirements, absence of models, and lack of 

MDE expertise 

Modeling the behavior of a system is the main activity on 

which MBT relies. In our industrial application, as in the case 

for most of the companies not employing model-driven 

engineering (MDE), there were no existing models of the 

systems available. Consequently, there wasn’t any expertise for 

modeling existed. This means that the only option to perform 

MBT was to resort to requirement specifications, 

implementation in the form of documentation, manuals, and 

knowledge from domain experts. However, in our industrial 

application, even existing requirements were incomplete and 

ambiguous. To develop the models for MBT, we resorted to 

looking at the documentation of implementation, manuals, and 

had discussions with domain experts. Later on, to develop 

expertise, we conducted several workshops to teach modeling 

to testers. In addition, during modeling at least one of the 

testers was involved.      
2)  Problems with modeling tools 

An important consideration for the practical adoption of 

MBT in industrial settings is the selection of an adequate 

modeling tool. This is important since the models developed 

are meant to support test automation. The modeling tool should 

provide support to export the models in a standard format, 

which can be later processed by other MDE tools (e.g., for 

model transformations and OCL parsing).  

3) Scalability issues for modeling non-functional behavior 

Non-functional behavior such as robustness crosscuts 

functional behavior and when is modeled directly with the 

functional model, the complexity of the resulting model 

increases enormously due to redundant modeling elements, 

which are scattered across the model (e.g., repeated in each 

state of the functional model). Modeling such redundant 

behavior requires substantial modeling effort if not modeled 

using a specialized modeling approach such as one based on 

Aspect-Oriented Modeling (AOM). In our application context 

for robustness testing, we defined [31] a UML profile 

(AspectSM) that allows modeling UML state machine aspects 

as UML state machines (aspect state machines) with the 

objectives of minimizing modeling effort and the learning 

curve for modeling crosscutting behavior. While the AspectSM 

profile focuses on UML state machines, comparable 

approaches [32-35] in the literature do not use UML extension 

mechanisms and make use of specific notations for aspect-

related features that do not follow any standard. With our 

industrial partners, and generally in most industrial settings, it 

was necessary to provide AOM support based on the UML 

standard to facilitate adoption. A detailed comparison of the 

AspectSM profile with other related profiles can be found in 

[31].  

B. Test Case Generation Challenges 

In this section, we will provide challenges we faced in the 

test case generation phase. 

1) Test Case Generation  

As explained, our input behavioral model is a UML 2.0 

state machine that allows complex structures like simple-

composite states, orthogonal states, and submachine states. 

Testing can be performed directly on such state machines, but 

this requires rather complex strategies, because such structures 

complicate the traversal and analysis of the state machine. An 

alternate approach is to flatten the state machines first, by 

removing concurrency and hierarchy, and then apply a test 

strategy. We implemented the latter for obtaining a better 

separation of concerns and lesser analysis complexity.  

Several algorithms are reported in the literature to flatten 

concurrent and hierarchical state machines [15, 36]. However, 

to the authors’ knowledge, these algorithms are partial and do 

not provide flattening of both hierarchy and concurrency. Thus 

we decided to implement our own flattening algorithm for 

UML 2.0 state machines. The implemented algorithm is a 

stepwise process that allows the user to modify the UML 

model at several points during the transformation towards the 

flattened version. More information about the flattening 

algorithm can be found in [37]. 

In the next step, the flattened state machine is transformed 

into a test tree based on the test strategy (e.g., a transition tree 

for all transitions criterion). Finally, test cases are generated by 

traversing the tree and outputting scripts in the preferred 

language. From practical standpoints, we wanted an MBT tool 

that supports standards and is extensible. Adding different 

output scripting languages, test models, coverage criteria on 

test models, and test data generation techniques for different 

application domains and systems with the least amount of 

effort are examples of useful extensions for a desirable MBT 

tool.    

2) Test Data Generation  

Test data generation is an important component of MBT 

automation. For UML models, with constraints in OCL, test 

data generation is a non-trivial problem. A few approaches in 

the literature exist that address this issue, but most of them 

have at least one of the following issues: 1) they do not handle 

important features of OCL (e.g. collections or operations on 

them [38, 39]), 2) they are not scalable, 3) they lack proper tool 

support [40]. This is a major limitation when it comes to the 

industrial application of MBT approaches that use OCL to 

specify constraints on models. 

In our application context, the most challenging part for test 

data generation was emulating faulty situations in the 

environment to test a system’s robustness against them. A 

faulty situation in the operating environment is emulated when 

the properties of the environment are violated. These violations 

are specified as change events (OCL constraints) on aspect 

state machines (representing the robustness behavior) that lead 

to faulty states. Unfortunately, some of these constraints are 

complex, comprising of up to eight conjuncted clauses and 

hence are very difficult to solve using existing OCL solvers.  

To solve the above issues, we developed an OCL constraint 

solver in Java that interacts with an existing library, an OCL 

evaluator called EyeOCL Software (EOS) [41]. Our tool 

implements a set of heuristics as discussed in [42] for various 

expressions in OCL using EOS’s API, which are then used by 

search algorithms such as genetic algorithm to guide the search 

for input data that satisfy such constraints. 



C. Challenges of Test Case Execution and Evaluation 

In this section, we will provide challenges we faced in the 

test case execution and evaluation phase. 

1) Executing large test suites 

The cost of test suite execution is an important factor for 

applicability of MBT. In practice, system testing must be at 

least partially performed on the actual hardware platform (e.g., 

with the actual sensors and actuators) or on a network 

specifically configured to help controlled and systematic 

testing (e.g., emulating IP traffic). This can have a large effect 

on the overall cost of testing since (a) test case execution time 

may be much higher than what can be expected, and (b) test 

case execution may require dedicated physical resources (e.g., 

specific assigned machines and restricted-access network) of 

limited availability.  

For instance, running one robustness test case requires 

booking a specialized testing lab and takes on average 15 

minutes on a Cisco’s VCS. Therefore, applicability of MBT in 

industry may depend on its flexibility in terms of the number of 

test cases to execute. However, applying standard MBT criteria 

on UML state machines results in test suites that are often too 

expensive or time-consuming to be fully executed (not fitting 

into the available test resources). This is expected to be a 

problem on most industrial systems, especially when modeling 

robustness along with the functional behavior.  

To address this problem, we developed two test case 

selection techniques: traditional coverage-based selection and a 

novel similarity-based test case selection [43, 44]. Unlike 

coverage-based approach, where the goal is covering more 

modeling elements with the given testing budget, the 

similarity-based approach maximizes the diversity between 

selected test cases. In other words, the choice of test cases to 

execute is optimized with respect to their pair-wise similarity, 

based on the underlying assumption that similar/dissimilar test 

cases most likely will detect common/distinct faults [43, 44]. 

2) OCL Evaluation 

Constraints defined on UML state machines, such as state 

invariants, guards, and pre/post conditions of triggers, should 

be evaluated during the execution of the generated test cases. 

As shown by many studies, this is a very effective way to 

detect failures [8, 26]. These constraints are usually written as 

OCL expressions in the context of UML.  

In our case study, we did not have direct access to the code 

of the SUT. Instead, special macros, provided by the test script 

language, were used to access the state of the system. Since we 

wanted our tool to be reusable in different contexts, we decided 

to use an OCL evaluator that can be invoked from test scripts. 

Therefore, we had to choose an evaluator that was efficient in 

terms of evaluating expressions, for example that does not 

require to be called several times for evaluating a single 

expression. After investigating several OCL evaluators such as 

OCLE 2.0 [27], OSLO [28], IBM OCL parser [29], and 

EyeOCL Software (EOS) evaluator [30], we chose EOS as we 

found this to be the most fitted evaluator for our requirements. 

Since EOS is a Java package, to invoke methods from its 

classes, we need to have access to Java from a test script. For 

example, in one of our case studies, test scripts were in a 

python-based scripting language. In order to access EOS from 

Python, we used Jpype [45] which is an extension to Python 

giving access to Java libraries through interfacing at the native 

level in both virtual machines (Java and Python).  

3) Environment emulation for robustness test case execution 

Executing robustness test cases is expensive because it 

requires setting up special equipment (hardware and/or 

software-based emulators) to emulate faulty situations in the 

environment. The emulators required in our current industrial 

case study are targeting networks, media streams and VCS. In 

our current case, we only experimented with the network 

emulator because all communications between VCSs take place 

via the network. It is hence important to test a VCS’s behavior 

in the presence of faulty situations in the network.  In our 

current application, we setup network emulator (netem [46]) 

once and then used it for testing without any additional settings 

for executing each test case. 

IV. TRUST: TRANSFORMATION-BASED TOOL FOR UML-

BASED TESTING  

Many commercial and academic tools (e.g., [2, 8-12] [4-7] ) 

support modeling of UML state machines and several well-

known MBT tools have been developed in recent years, such as 

TDE/UML (Siemens) [6], SpecExplorer (Microsoft) [7], IBM 

Rational Functional Tester [5], and Qtronic [47]. However, in 

this project, we implemented our own MBT tool called 

Transformation-based Tool for UML-based Testing (TRUST), 

which has been developed by the authors [37]. The main 

motivation for developing TRUST was having an easily 

extensible tool on which to base our research and tackle all the 

 
Figure 1: Transformation-based Approach for TRUST 



above mentioned challenges (Section 3).  

TRUST accepts UML state machines containing 

concurrency and hierarchy as the input model and generates 

executable test cases along with oracles. It is integrated with 

IBM Rationale Software Architect (RSA) [48] as modeling tool 

and applies a series of model-to-model (in Kermeta [49]) and 

model-to-text (in MOFScript [50] ) transformation rules on the 

input model to generate the final test scripts. Figure 1 illustrates 

this transformation-based approach for TRUST. 

TRUST, specifically dedicates one step of model-

transformation for preparing test ready models. Since in this 

project, the input models (UML 2.0 state machines) had 

hierarchy and concurrency, they were first flattened, to be able 

to apply classic, graph-based coverage criteria [37]. The next 

step is deriving abstract test cases (ATCs) from the test ready 

model (flattened state machines in TRUST) according to a test 

strategy, which is typically defined based on a test model and 

coverage criteria (e.g., all states) to guide its traversal [37]. 

ATCs, like concrete test cases, contain the present state of the 

SUT and its environment, the test inputs and conditions, and 

the expected results, but expressed at a higher level of 

abstraction. Finally, executable test cases are generated by 

adding all platform dependent information to ATCs and 

mapping abstract information (e.g., triggers and state variables) 

of the ATC to the actual executable information (e.g. method 

names and system variables) in the test script. 

Model transformation languages provide the developer 

direct support for navigating, creating, and manipulating a 

model, based on its metamodel. Generally, the transformation 

rules are relatively compact and easy to read, write, and 

change. For example, adding a new feature (for example, 

outputting test scripts in a new language) can be achieved by 

writing a new set of transformation rules in the component that 

provides the corresponding artifact, without affecting the other 

components [37].  

V. KEY RESULTS  

A. Modeling phase 

This section discusses key results related to modeling. 

1) Modeling functional behavior to support functional 

testing 

For modeling functional behavior, the modeling process 

started with two presentations by the company representatives, 

followed by reading some system specification documents. 

Then, we had two workshops with experts from the company to 

better understand the system and domain. Afterwards, we built 

the system model and at each step we validated the models, 

semantically, with the help of company experts. Finally, during 

the development of TRUST, the model was augmented with 

many modeling details that were missed initially such as 

missing parameter types of the attributes of classes and missing 

connection point references on submachines. 

To model the functional behavior, for each subsystem, we 

modeled a class diagram to capture APIs and state variables. In 

addition, we modeled one or more state machines to capture the 

behavior of each subsystem. Due to confidentiality restrictions, 

we do not provide details about the models of the subsystems. 

However, on average each subsystem has five states and 11 

transitions, with the biggest subsystem having 22 states and 63 

transitions. It is important to note that, though the complexity 

of an individual subsystem may not look high in terms of 

number of states and transitions, all subsystems run in parallel 

to each other and therefore the spaces of system states and 

possible execution interleavings are very large. Saturn’s 

implementation consists of more than three million lines of C 

code. 

2) Modeling non-functional behavior to support robustness 

testing 

Modeling of the robustness behavior of Saturn was 

performed by the authors with the help of testers at Cisco, who 

were involved in robustness testing. Before modeling, it was 

important to have meetings with software engineers at Cisco to 

understand the specifications of the robustness behavior 

implemented in Saturn. When the specifications were 

sufficiently understood, the modeling process started. The 

testers themselves were involved in the modeling of the 

robustness and functional behavior. The models were discussed 

and revised several times during the modeling, to ensure that 

the behavior is modeled completely and correctly. The 

robustness modeling took around seven hours. Understanding 

the specification took approximately four hours, whereas the 

actual modeling took approximately three hours.  

Saturn’s non-functional behavior was modeled with five 

aspect class diagrams and five aspect state machines modeling 

various robustness behaviors. The largest aspect state machine 

specifying robustness behavior has three states and ten 

transitions, which would translate into 1604 transitions in 

standard UML state machines, if AspectSM was not used. 

Using AspectSM, we saved more than 95% of the modeling 

effort when measured by the number of modeled elements 

involved in the VCS robustness behaviors (Table I). Of course, 

this effort is saved at the expense of learning and applying 

various stereotypes defined in AspectSM. Interested readers 

may consult [51] for more details. 

Additionally, we evaluated AspectSM using several 

controlled experiments. In [52], we reported the results of two 

controlled experiments to evaluate whether AOM can help 

improve the “readability” of UML state machines in terms of 

design defect identification, defect fixing, comprehension, and 

inspection effort. The results show that the defect identification 

and defect fixing rates of aspect state machines are 

significantly higher than the ones for the hierarchical and flat 

state machines. On average, we observed increases of 28% in 

the defect identification rates and 19% for defect fixing 

respectively, when compared to standard UML state machines 

(Table I). There were no significant differences observed for 

effort and comprehension between aspect state machines and 

standard UML state machines. 

In [53], we assessed conformance error rates of applying 

AspectSM from different perspectives by conducting modeling 

activities such as: 1) identifying modeling defects, 2) 

comprehending state machines, and 3) modeling crosscutting 

behaviors. Results show that for most of the activities, the 



participants, who were given treatment, AspectSM achieved 

significantly lower error rates than the ones given standard 

UML state machines as summarized in Table I.  
Table I. Summary of key results for non-functional modeling 

* Inc: Increase, Dec: Decrease, -: no differences 

# Property Percentage 

(Inc/Dec)* 

1 Modeling effort 95% (Dec) 

2 Readability Defect Identification 28% (Inc) 

 Defect Fixing 19% (Inc) 

 Effort - 

3 Comprehension - 

4 Modeling 
Errors 

Inspecting Models 59% (Dec) 

 Comprehension Errors - 

 Modeling crosscutting behaviors 14% (Dec) 

5 Applying 

AspectSM 

Completeness 14% (Inc) 

 Correctness 13% (Inc) 

 Redundancy 16% Dec) 

 Effort 56% (Inc) 

In [54], we reported an experiment that was conducted to 

evaluate the “applicability” of AspectSM. We looked at 

applicability from two aspects: the quality of derived state 

machines in terms of completeness, correctness, and 

redundancy, and modeling effort. Results show that the 

completeness and correctness of aspect state machines are 

significantly higher than for standard state machines modeling 

on the same set of crosscutting behaviors (14% and 13% 

respectively). Furthermore, the redundancy in aspect state 

machines is significantly less (16%) than that for standard 

UML state machines. However, aspect state machines took 

significantly more time as compared to standard UML state 

machines (on average 56% more time as shown in Table I). 

B. Test Case Generation phase 

1) Test case generation 

We have implemented several standard test strategies such 

as state-coverage, transition coverage, all round trip paths, and 

length N paths [37]. As an example, in one of our case studies 

the input model is a three-level hierarchical state machine 

consists of four submachine states. The flattened version of the 

state machine consists of 11 states and 70 transitions. Using an 

all-transition coverage, TRUST generated 59 abstract test 

cases.  

Currently, TRUST can output concrete test cases in two 

languages C++ and Python. However, both test strategies and 

output languages are easily extensible by adding new set of 

transformation rules in TRUST. 

2) Test data results  

We compared our search-based test generator with one 

well-known, freely available OCL solver (UMLtoCSP) [41]. 

We ran our set of constraints with UMLtoCSP. The results 

showed that, even after running UMLtoCSP for 10 hours, no 

solutions could be found for most of the constraints. The reason 

is that the existing OCL solvers require the conversion of OCL 

to lower-level languages such as a Satisfiability (SAT) formula 

[55] or a Constraint Solving Problem (CSP) [41] instance and 

hence can easily result in combinatorial explosion as the 

complexity of the model and constraints increase (as discussed 

in [41]). For industrial scale systems, as in our case, this is a 

major limitation, since the models and constraints are generally 

quite complex. Hence, existing techniques based on conversion 

to lower-level languages seem impractical in the context of 

large scale, real-world systems. In contrast, our solver managed 

to solve the same constraints in 3.8 minutes on average [42] on 

a regular PC. This gives empirical evidence that it is possible to 

quickly and directly solve complex industrial constraints 

written in a high-level language such as OCL, and hence 

efficiently emulates faulty situations in the operating 

environment for robustness testing purposes. More details on 

the empirical evaluations, we conducted, can be found in [42]. 

C. Test Case Execution and Evaluation phase 

This section provides key results related to test case 

execution and evaluation.   

1) Executing large test suites 

In  [43, 44] we report a comprehensive comparison between 

different test case selection techniques for MBT and show that 

using the proposed similarity-based selection in TRUST leads 

to very large savings in terms of the number of test cases that 

do not need to be executed. Table II shows a typical example of 

the type of improvement that we achieve in reducing the test 

execution cost. As we can see, the mean fault detection rate 

(percentages of detectable faults by the entire test suite that is 

detected by executing a selected subset of the test suite) of our 

similarity-based selection reaches 100% with only 40 abstract 

test cases (around 14% of the test suite). However, the two 

other alternatives (random selection and the best existing 

approach, which is a coverage-based test case selection 

technique) cannot reach 100% even with 140 abstract test cases 

(half of the test suite). Looking at the fault detection rates, 

especially for smaller test selection sizes, our approach 

provides significant improvements over both coverage-based 

and the random selection. More details about the cost-

effectiveness analysis of different test case selections for MBT 

can be found in [31]. 

2) Robustness test case execution  

For our current case (network-related robustness testing of 

Saturn), the execution of test cases found one robustness fault 

(halt and restart) in Saturn, when more than 10% duplicate 

packets were introduced in network communication. Our 

Table II. The percentages of detectable faults by the entire test suite (281 test cases) that is detected by executing a selected subset of the test suite (10 to 140 test 

cases). The subsets are selected using random selection, a state of the art coverage-based, and a newly proposed similarity-based test case selection. 

Test case selection 
Number of test cases executed 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 

Random selection 29% 40% 50% 57% 63% 69% 73% 78% 81% 84% 85% 89% 91% 93% 

Coverage-based 
selection 

46% 59% 82% 84% 86% 87% 89% 90% 91% 92% 94% 95% 95% 95% 

Similarity-based 
selection 

59% 84% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 



approach had more chances to catch this fault compared to 

existing practices at Cisco. Since MBT is more systematic and 

is in our case specifically tailored to catch robustness faults. 

Our approach indeed focuses on automatically testing the 

robustness of Saturn over various functional scenarios in the 

presence of several faulty situations in the network. In contrast, 

current robustness testing of Saturn is based on scripts written 

manually by testers to test a few network properties over a few 

of functional scenarios.  

VI. LESSONS LEARNED  

In this section, we present lessons learnt during modeling 

(Section A), test case generation (Section B), and test case 

execution (Section C), while applying MBT on Saturn VCS at 

Cisco System, Norway. 

A. Modeling phase 

This section presents lessons learnt while modeling 

functional and robustness behavior to support MBT. 

1) Lesson 1: Make models precise, correct, and complete  

We experienced that the precise, correct, and complete 

modeling is absolutely necessary for executable test case 

generation from models. In our case study, our focus was on 

precise and complete behavioral modeling of complex 

industrial systems using standard UML 2.0 state machines. 

During test case generation, we found several modeling 

elements that we unintentionally forgot to model and those 

were revealed when we tried to generate executable test cases 

using TRUST. A good test case generation tool must have 

support to report any syntactic errors (e.g. a state without any 

incoming or outgoing transitions) and any missing information 

(e.g. missing state invariant), which is required for test case 

generation.  

Making semantically correct models, however, is not a 

trivial task and requires that the UML specification and domain 

be carefully studied. Even though constructs like concurrency 

and hierarchy are supposed to ease the understandability of 

large state machines, such constructs may actually confuse the 

developer. In particular, we experienced that concurrency, if 

not carefully applied, could introduce modeling errors in 

practice. For example, concurrent regions sometimes make it 

difficult to see the set of transitions between state 

combinations. A typical fault is that a guard is missing on a 

transition, which allows for transitions to state combinations 

that are illegal targets from particular source states. However, 

we found that it helped to inspect the flattened state machine to 

detect such mistakes.  

2) Lesson 2: Select a standard modeling notation based on 

your needs 

Selecting a proper notation for modeling the SUT’s 

behavior is an important decision to make. In all our industrial 

applications, we selected UML due to the following reasons: (i) 

it is a modeling standard; (ii) it has industrial strength tool 

support, both open source (e.g., Papyrus) and commercial (e.g., 

IBM RSA); (iii) it has sufficient training material available to 

help train the final users in the company applying MBT; (iv) it 

provides a rich set of notations to model a system from 

different perspectives; (v) it is extensible for various 

application domains, for instance, we extended UML state 

machines using its profiling mechanisms to model aspect state 

machines.  

Despite the above-mentioned advantages, UML is still a 

challenge to apply in industrial settings, without clear 

objectives and a well-defined methodology. UML is a general 

purpose, standard modeling language that is meant to cater for 

different application domain and problems, and is, as a result, 

quite large. The entire language is not meant to be used to solve 

a particular problem in a particular domain. Therefore one of 

the key requirements to make UML successful in industry is to 

select a proper subset of the language matching the needs. In 

our projects, we selected UML class diagram to capture the 

structure of a VCS including state variables and APIs. For 

modeling behavior, we selected UML state machines as VCSs 

exhibit state-based behavior.  

3) Lesson 3: Select the modeling tool carefully  

Selecting an appropriate modeling tool is very critical for 

the adoption of MBT in an industry. In our case study, we 

experimented with IBM RSA and Papyrus UML since they are 

EMF-based [56] and hence can be used with other EMF based 

tools (e.g., Kermeta for model transformations). For Papyrus 

UML, we faced serious usability problems in modeling state 

machines, since most of the user interface of the tool is based 

on the assumption that the modeler is aware of the underlying 

UML metamodel. IBM RSA comes with a high price tag to be 

used in small to medium sized companies. Overall, we found 

IBM RSA is the most viable modeling tool in terms of usability 

and its interoperability with third party Model-Driven 

Engineering tools (such as model transformation tools).  

B. Test Case Generation phase 

This section presents lessons learnt during the test case 

generation phase. 

1) Lesson 1: Use an extensible and standard-supporting 

approach and tool for test case generation 

Our search for MBT tools showed that all of them have at 

least one of the following drawbacks:  

 They do not support well-established standards for 

modeling the SUT. This makes it difficult to integrate 

MBT with the rest of the development process, which 

in turn makes the adaptation and the use of MBT more 

costly.   

 They cannot be easily customized to different needs and 

contexts. For example, one may need to model and test 

non-functional requirements. Or a tester may want to 

experiment with customized test strategies to help 

target specific kinds of faults.  

Thus, we developed TRUST, whose software architecture 

and implementation strategy facilitate its customization to 

different contexts by supporting extensible features such as 

input models, test models, coverage criteria, test data 

generation strategies, and test script languages [37].  

2) Lesson 2: Model transformations as a way to enable 

extensible MBT 



To make a standard-supporting and extensible tool, model 

transformation is used in TRUST for implementing model-to-

model and model-to-text transformations [57]. We found this 

approach very well-suited for developing TRUST because of 

the separation of concerns provided by its well-defined 

components-based implementation [37].   

3) Lesson 3: Experiences with model transformation 

languages 

We experimented with two different model-to-model 

transformation languages: Kermeta [49] and ATL [32]. 

Compared to declarative model-to-model transformation 

languages such as ATL, we found Kermeta to be highly 

appropriate for flattening UML state machines. In addition to 

being an object-oriented language, it allows you to add 

behavior to the metamodel through aspect weaving. With ATL, 

we faced serious problems while transforming large models. 

Whenever, the size of models increases, ATL being a 

declarative language requires more memory to process models 

and hence results in out of memory errors.   

For model-to-text transformations, we used MOFScript 

[50], which is powerful and easy to use. MOFScript is quite 

similar to programming languages like Java, and provides 

powerful features that are easy to use for querying models, 

outputting text, and accessing external Java libraries. We didn’t 

face a lot of challenges while working with MOFScript, 

although, we did have issues in converting MOFScript objects 

into Java objects, while integrating Java with MOFScript for 

the purpose of accessing OCL evaluators implemented in Java.   

C. Test Case Execution and Evaluation phase 

This section presents lessons learnt during the test case 

execution and evaluation phase. 

1) Lesson 1: Be adjustable with respect to the testing 

budgets 

Execution and evaluation of test cases generated by an 

MBT tool may require time and resources beyond the testing 

budgets assigned for the testing task. Therefore, to make the 

test execution and evaluation affordable, MBT tools must 

provide proper test selection/prioritization. Our experiments 

[31] provide some evidence that similarity-based test case 

selection is a good candidate for MBT test case selection.  

2) Lesson 2: Environment emulation a bottleneck for 

robustness testing 

Executing robustness test cases is expensive because it 

requires setting up special equipment (hardware and/or 

software-based emulators) to emulate faulty situations in the 

environment. The emulators required in our current industrial 

case study are targeting networks, media streams and VCS. In 

our case, we only experimented with the network emulator 

because all communications between VCSs takes place via the 

network. It is hence important to test a VCS’s behavior in the 

presence of faulty situations in the network.  In our current 

application, we setup network emulator (netem [46]) once and 

then used it for testing without any additional settings for 

executing each test case. 

3) Lesson 3: Selecting an appropriate OCL evaluator for 

test data generation and test oracles 

Checking state invariants written as OCL constraints during 

test case execution provides automated oracles. In our case, we 

used EOS [58] for evaluation. In addition, for test data 

generation, i.e., to solve guards and emulate faulty environment 

conditions, we used again EOS for parsing and evaluating OCL 

expressions. We experienced that EOS is one of the most 

efficient OCL evaluators and provides a very simple API to 

evaluate and parse OCL expressions. In our experience, the 

only major downside of EOS is that, to evaluate/parse OCL 

expressions, EOS requires class and/or object diagrams to be 

loaded into its memory in a specific format. To facilitate this, 

we wrote a MOFScript transformation that takes the UML class 

diagram (modeling state variables, method calls, and signal 

receptions of the SUT) as input and generates a Java wrapper 

class that includes a set of EOS method calls for making class 

and object diagrams.  

During test case generation, we solve the constraints on the 

environment properties to emulate faulty situations in the 

environment using EOS and search algorithms. Another issue 

when solving an OCL constraint using a search algorithm is 

that it requires evaluating the OCL expression many times, and 

hence the speed of constraint solving depends on the efficiency 

of the selected OCL evaluator. Recall from Section IV that our 

TRUST testing tool is extensible in such a way that any other 

OCL evaluator and parser (more efficient) can be easily 

replaced with EOS, if required. 

VII. RELATED WORK  

Several initiatives have been taken to assess the 

applicability of model-based testing techniques into industry. 

For instance, one notable project in this regard is the D-Mint 

project [59], which was an Information Technology for 

European Advancement (ITEA) 2 project on Deployment of 

Model-Based Technologies to Industrial Testing (D-Mint). The 

project involved several industrial and academic partners from 

several European countries including Estonia, Finland, France, 

Germany, and Spain. Some of the experiences reported in this 

paper are a part of participation in the D-Mint project (2007-

2009) as a volunteer partner from Norway involving Simula 

Research Lab as an academic partner and Cisco (Tandberg AS. 

at the time) as an industrial partner. 

Some of our experiences of applying model-based 

robustness testing (MBRT) have already been reported in [60], 

where we explained how we developed and integrated various 

techniques and tools to achieve a fully automated MBRT that 

was able to detect previously uncaught software faults in 

Cisco’s Video Conferencing System. The work presented in 

this paper, however, is a more comprehensive report which 

covers all aspects of model-based testing activities at Cisco 

including MBRT, functional testing, and test case selection 

since 2007.              

Several industrial experiences of applying MBT have been 

reported in the literature. In [61],  industrial experiences of 

MBT are reported from a project called Automated Generation 

and Execution of Test Suites in Distributed Component-based 

Software (AGEDIS). Five industrial case studies (Two at 

French Telecom, one at Intrasoft, and three at IBM) were 



conducted on real MBT problems. Based on these applications, 

the following experiences were reported: 1) Modeling 

improves understanding of a SUT and helps in locating 

inconsistences; 2) Modeling provided a good communication 

mechanism; 3) Test case generation based on input and output 

coverage were shown to be better than full space coverage 

resulting in combinatorial explosion.   

Another experience report of MBT is reported in [62] for 

testing of Wireless Application Protocol (WAP) gateway 

developed by Ericsson. The developed techniques and tools 

have industrial strength and successfully managed to find 

several conformance errors between the models and the real 

system implementation. In [63], Conformiq’s Qtronic [47] and 

Microsoft’s SpecExplorer [64] were applied to case studies 

from Siemens Healthcare domain. Both tools were evaluated 

based on different criteria to ensure quality of healthcare 

systems. Results showed that both tools are useful for industrial 

applications. However, it was concluded that Qtronic is better 

for systems whose implementations are based on asynchronous 

message exchange. SpecExplorer on the other hand is more 

suitable for reactive object-oriented system.  According to [65], 

even though MBT has been used intensively in academia and 

industry, a rich body of experiences for MBT is still not 

published.  

This paper adds up an additional experience of industrial 

application of MBT in the current body of evidence. Though, 

our experiences on the model transformation-based MBT 

implementation, non-functional MBT, and a search-based test 

generation and selection for MBT is novel and not considered 

in the other reports. Nonetheless, our experiences of MBT 

reported in this paper complement the findings of other 

reported experiences of MBT.  

VIII. CONCLUSION 

Model-based Testing (MBT) has seen an increasing interest 

in the industry and such interest has led to rise of a large 

number of MBT approaches and tools. This is due to the fact 

that benefits of MBT such as support of automation, being 

rigorous, and facilitation of defining specialized test strategies, 

have been widely realized by the industry. Application of MBT 

to an industrial setting always varies and provides useful 

insights into MBT practices depending on the application 

domain, type of testing targeted, and current testing focus. 

Collecting experiences and lessons learnt from such industrial 

applications can always guide other practitioners to learn from 

these and use them as guidelines for future applications.  

With the above objective in mind, we reported our 

experiences of applying MBT for functional and robustness 

testing at Cisco Systems, Inc. Norway, for testing embedded 

Video Conferencing Systems (VCSs). We reported challenges 

of modeling VCS, test case generation from the models of the 

VCS, and finally execution of the generated test cases. 

Moreover, we provide a quick review of our novel solutions to 

these challenges along with the key results. Finally, we provide 

lessons learnt, which serve as guidelines for future industrial 

applications of MBT. At a high level, our experiences revealed 

that Aspect-Oriented Modeling provides a scalable modeling 

solution to robustness testing. We further conclude that search 

algorithms are efficient mechanism for defining sophisticated 

and cost-effective test selection strategies and also for 

efficiently solving complicated constraints for test data 

generation. Finally, model transformations provide an efficient 

and extensible solution for developing a model-based test case 

generation tool.    
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