
Test Case Analytics:
Mining Test Case Traces to Improve Risk-Driven

Testing

Tanzeem Bin Noor, Hadi Hemmati
Department of Computer Science

University of Manitoba
Winnipeg, Canada

{tanzeem, hemmati}@cs.umanitoba.ca

Abstract—In risk-driven testing, test cases are generated
and/or prioritized based on different risk measures. For example,
the most basic risk measure would analyze the history of the
software and assigns higher risk to the test cases that used to
detect bugs in the past. However, in practice, a test case may not
be exactly the same as a previously failed test, but quite similar. In
this study, we define a new risk measure that assigns a risk factor
to a test case, if it is similar to a failing test case from history.
The similarity is defined based on the execution traces of the test
cases, where we define each test case as a sequence of method
calls. We have evaluated our new risk measure by comparing it
to a traditional risk measure (where the risk measure would be
increased only if the very same test case, not a similar one, failed
in the past). The results of our study, in the context of test case
prioritization, on two open source projects show that our new
risk measure is by far more effective in identifying failing test
cases compared to the traditional risk measure.

Keywords—Risk; Execution trace; Testing; Bug; Risk-driven
testing; Similarity; Test case prioritization.

I. INTRODUCTION

In risk-driven testing, test cases are generated and or
prioritized (for example in the context of regression testing), by
their degree of riskiness. Riskiness can be defined differently
in different contexts. For example, in the context of safety-
critical systems the severity of a failure can define how risky
its detecting test case is. In the context of web services with
thousands/millions of users, on the other hand, the likelihood
of the failing test scenarios to be experienced by a typical
user may be a more important risk factor. However, in general,
a basic risk measure in risk-driven testing is defined as the
probability of the test being failed in the past. In other word, if
a test case detects a bug in previous releases, one should make
sure that the test case is executed in the current release (after
the new modifications), as well. This is very common practice
in regression testing, where the goal is prioritizing test cases so
that the more effective tests (in this case more risky ones) are
being executed first. Test case prioritization is very important
in practice for software companies, specially when continuous
integration and rapid release demands fast development paces.

The typical risk measure [1] basically goes through the
history of the software and checks whether any of the current
test cases used to fail (detect a bug) in any of the previous
releases. If so, the riskiness of the test case would be
incremented per failing occurrence. The problem with this

approach is that in many situations the test case that detects a
bug is not exactly the same as any of the previously failing test
cases. However, it is quite similar to some test cases, in terms
of the sequence of methods being called (the test scenario).

Therefore, in this paper, we define a new risk measure that
assigns a riskiness value to test cases when their execution
trace (mined by Daikon tool [2]) is similar to the execution
traces of any of the past failing test cases. We have evaluated
our measure, in the context of test case prioritization, on two
open source Java projects Commons Lang and Joda Time and
the results show that our approach is always by far better than
the old-fashion risk measure.

The rest of this paper is organized as follows: section II
mentions our motivation; our proposed risk measure has been
presented in section III. We have explained our experiments
and results in section IV. Section V states some of the related
works. Finally, section VI concludes the paper and mentions
our future work.

II. MOTIVATION

Traditionally, a test case would be considered as risky if
it failed in the previous releases [1]. Now assume a test case,
such as testLang747 (a test case from the latest version of
Project Lang, explained in Section IV) in Fig. 1, that is just
added to the current test suite and fails. It is obviously not
risky according to the traditional definition of test riskiness,
since it did not exist in the previous releases, to fail. However,
there are some test cases in the past that are quite similar to
this test case and they failed, e.g., the test case in Fig. 2. Given
that testLang747 is risky (actually failed), it would be nice
to have a risk measure for test cases that do not only look at
exact occurrences of the test case in the past, but rather look
at its similar cases as well.

The key question here is "how do we identify such
similar test cases?". In this paper, we represent each
test case with a sequence of method calls, which are
extracted from their execution traces. For instance, the
sequences for the two test cases of Fig. 1 and 2 are
shown in Fig. 3(a) and Fig. 3(b). As it can be seen,
math.NumberUtils.createNumber(java.lang.String),
StringUtils.isBlank(java.lang.CharSequence) and
math.NumberUtils.isAllZeros(java.lang.String)

978-1-4673-6923-7/15/$31.00 c© 2015 IEEE SWAN 2015, Montréal, Canada13

@Test
public void testLang747() {

assertEquals(Integer.valueOf(0x8000), NumberUtils.createNumber("0x8000"));
assertEquals(new BigInteger("8000000000000000", 16), NumberUtils.createNumber("0x8000000000000000"));
....
assertEquals(new BigInteger("FFFFFFFFFFFFFFFF", 16), NumberUtils.createNumber("0xFFFFFFFFFFFFFFFF"));
assertEquals(Long.valueOf(0x80000000000000L), NumberUtils.createNumber("0x00080000000000000"));
assertEquals(Long.valueOf(0x800000000000000L), NumberUtils.createNumber("0x0800000000000000"));
...
assertEquals(Long.valueOf(0x7FFFFFFFFFFFFFFFL), NumberUtils.createNumber("0x07FFFFFFFFFFFFFFF"));
assertEquals(new BigInteger("8000000000000000", 16), NumberUtils.createNumber("0x00008000000000000000"));
assertEquals(new BigInteger("FFFFFFFFFFFFFFFF", 16), NumberUtils.createNumber("0x0FFFFFFFFFFFFFFFF"));

}

Fig. 1. Failing test in latest version

@Test
public void testStringCreateNumberEnsureNoPrecisionLoss() {

String shouldBeFloat = "1.23";
String shouldBeDouble = "3.40282354e+38";
String shouldBeBigDecimal = "1.797693134862315759e+308";

assertTrue(NumberUtils.createNumber(shouldBeFloat) instanceof Float);
assertTrue(NumberUtils.createNumber(shouldBeDouble) instanceof Double);
assertTrue(NumberUtils.createNumber(shouldBeBigDecimal) instanceof BigDecimal);

}

Fig. 2. Failing test in previous version

math.NumberUtilsTest.testLang747()
math.NumberUtils.createNumber(java.lang.String)
StringUtils.isBlank(java.lang.CharSequence)

math.NumberUtils.createInteger(java.lang.String)
.
StringUtils.isBlank(java.lang.CharSequence)
math.NumberUtils.isAllZeros(java.lang.String)

.
StringUtils.isBlank(java.lang.CharSequence)
math.NumberUtils.createInteger(java.lang.String)

(a) Test case trace of Fig. 1

math.NumberUtilsTest.testStringCreateNumberEnsureNoPrecisionLoss()
math.NumberUtils.createNumber(java.lang.String)
StringUtils.isBlank(java.lang.CharSequence)
math.NumberUtils.isAllZeros(java.lang.String)

math.NumberUtils.createFloat(java.lang.String)
math.NumberUtils.createNumber(java.lang.String)
StringUtils.isBlank(java.lang.CharSequence)
math.NumberUtils.isAllZeros(java.lang.String)
math.NumberUtils.createFloat(java.lang.String)

(b) Test case trace of Fig. 2

Fig. 3. Execution traces

methods are the same in the two test case traces, which makes
the two test cases similar.

In the next section, we introduce a new test case risk
measure based on the trace similarities, to capture the historical
risk factor that is not extractable using the traditional risk
measure, as explained in this section.

III. SIMILARITY BASED RISK MEASURE

To overcome the limitation explained in the previous
section and empower test case risk measures, we introduce the
Similarity-Based Risk Measure (SBRM). In a nutshell, SBRM
works on the execution sequence level of test cases. The current
implementation of SBRM is on the unit test level but it can
easily be extended to component and system level testing as
well.

The key idea of SBRM is representing each test case
by a sequence of methods that are being called when the
test is executed on the system under test. These sequences
can be extracted dynamically (for example using Daikon [2]),
or statically). Once the tests are encoded as sequences, the
riskiness of a test case would be a function of its similarity to
the failing sequences (test cases) in the past.

There are several similarity functions that one can use to
define the risk measure. The main difference between these
functions is whether they account for the order of the method

calls in the sequence or not (i.e., they take it as a Set not a
Sequence). In this paper, we use a very basic function which
does not account for the method call orders nor for their position
in the sequence. The function simply looks at the past failing
sequences and counts the overlap of their method calls with
the method calls of the test case under study. The total risk
measure of a test case is the sum of all these occurrences.

For example, assume we are ranking a pair of test cases
(T2 and T3) in the current release of a software (for instance
as part of test prioritization in the regression testing context).
Based on the history, we find a failing test case T1, which calls
method m1, m2, m3, m2, m4, sequentially, from the source
code. So, its trace would be T1: < m1,m2,m3,m2,m4 >.
We identify m1, m2, m3 and m4 as risky methods and
the total risk factor of these methods are 1, 2, 1 and 1,
respectively. Now, in the current release, assume T2’s trace is
< m0,m1,m2,m3,m4,m5,m6 > and T3 has the following
trace < m7,m3,m4,m8,m1,m8 >. The method m1, m2, m3
and m4 from T2 also appeared in the buggy trace T1. So,
the corresponding risk factors of T2 are < 0, 1, 2, 1, 1, 0, 0 >
(assuming there is no other failing test case in the past with
a method call overlap with T2). Thus the overall riskiness of
T2 is 5. Similarly, T3’s risk factors, with the same assumption,
are < 0, 1, 1, 0, 1, 0 > and the overall riskiness is 3. Thus we
would prioritize T3 to T2, in a risk-driven prioritization.

14

TABLE I. PROJECTS UNDER STUDY

Project #Versions #Test Methods

Commons Lang 65 2245

Joda Time 27 4130

IV. EVALUATION

In this section, we explain our dataset, experiment design
and results.

A. Dataset

In this paper, we use two projects from defects4j database
[3]. The database provides 357 bugs and 20,109 tests from
5 different open-source Java projects. All the bugs are real,
reproducible and have been isolated in different versions [4].
There is a buggy version and a fixed version of the program
source code, for each bug. The buggy source code is modified
in the fixed version to remove the bug. The test cases are the
same in both the buggy and the fixed version. However, there
is at least one test case (a Junit test method) in each version
that fails on the buggy version but passes on the fixed version.

In this paper, we study two projects (Table I) out of the five
projects of defect4j. Note that the number of versions is equal
to the number of bugs, in each project, due to the way defect4j
isolates each bug in a separate version. In this paper, we have
analyzed the latest 10 versions for each of these projects. Note
that for the sake of reproducibility, all the raw data of the
experiment is available online. 1

B. Experiment Design and Setup

We run all test cases (all the test methods of all the test
classes) that come with each of the 10 most recent versions.
For a given version, all the previous versions are considered as
history. We make two history database for two risk measures,
studied in this paper.

First, for the traditional risk measure, we extract the failing
test cases from each version and keep the failing counts per
test method. For the SBRM, we extract the traces of each of
the failing test methods and keep the failing counts for each
internal method call. Note that for each version the history is
made based on the previous versions, thus the counts would
be different per version.

We have used daikon [2] tool to produce the execution
traces. We run the JUnit tests individually using the daikon
Chicory command. As we are only interested in the method
calls of the source code (not the internal method calls of other
referenced library, e.g., JUnit), some more options have been
set to the daikon Chicory command.

When a test fails, a list of risky methods have been generated
from its execution trace those work as historical data for the
later versions. The overall riskiness of current test cases have
been calculated based on the similarity between current release
tests trace and buggy traces from the history (list of risky
methods) as mentioned in section III. Finally, the tests have
been sorted in their descending order of overall riskiness and
ranked accordingly (test prioritization).

1 http://sealab.cs.umanitoba.ca/wp-content/uploads/2015/01/Dataset.zip

Though we have generated the trace dynamically by running
the tests from all versions, the trace could be statically generated
for the current version, specially the newly added tests, to avoid
executing them before prioritization. Another design decision
was that, for each version under study, the traces have been
collected only for all the test methods in failing test classes. This
is just to keep the experiment size small, since the entire test
suite was quite large. However, the approach can be extended
to the entire test classes, if necessary, without any validity
threat.

C. Results

Table II shows the results of our experiment on the
Commons Lang project the Joda Time project. The table
represents the rank of the failing test method(s) out of all
the test methods in the class, using the two risk measures
(SBRM and the traditional).

For both of the projects, Version 11 (V11) is the initial
release and V1 is the latest release. As V11 is the first release,
so no risk measure is available for this version based on the
history. However, V10 has V11 as its history and similarly V1
gets information from V11 to V2, as history. The ’N/A’ value
in the last column of the tables means the risk measure can not
be used for ranking because of the lack of data from history.
This usually happens in the traditional risk measure, where the
failing test method has been newly added in the current version
and therefore, it has no failing history in the previous versions.
It can also happen in both traditional and SBRM measures
when the failing test’s risk value is 0.

The first observation from the results is that SBRM definitely
outperforms the traditional risk measure given that in most cases
the failing test is newly added and the traditional approach is
not even able to rank the test methods. However, only in two
occasions, V10 and V7 of project Commons Lang, SBRM fails
to rank.

Looking at the results we see that not only SBRM is able
to rank in most cases but also it ranks quite well. In most cases,
the failing test method is among the top 5 risky test methods.
This is quite interesting and has potential use cases in test case
selection and prioritization. Finally, we can also see that the
results of SBRM is better for the more recent versions, where
there is more history available. For example, in V6 the failing
test is ranked 33 out of 93 tests in its failing test class using
SBRM. However, the failing test is ranked 4 out of 81 tests
in the latest release, V1. This is again promising since our
measure is essentially a history-based approach.

In the 10 versions of the Lang project that we studied,
exactly one test fails per version. However, multiple tests fail
in some of the 10 versions of the Time project. Therefore,
in Table II, you can see that 2 tests from different classes in
project Time fail in V10. Also, V7, V6, V5 and V3, have more
than one failing test method in the same test class. For example,
5 test methods fail in V3 from a class having 40 tests and all
of them are ranked among top 5 using SBRM.

V. RELATED WORK

History-based risk measures, which are the focus of this
paper, are widely used in the bug prediction literature [5].

15

TABLE II. TEST CASE RANKS BASED ON THEIR RISKINESS USING
SBRM AND THE TRADITIONAL RISK MEASURES. (THE LOWER RANK

MEANS HIGHER RISK) – PROJECT LANG AND PROJECT TIME

Project Version #Test Methods SBRM-based Rank Traditional Rank

Lang

10 27 N/A N/A
9 28 25 N/A
8 14 1 N/A
7 75 N/A N/A
6 93 33 N/A
5 13 1 N/A
4 2 1 N/A
3 81 6 N/A
2 14 2 N/A
1 81 4 N/A

Time

10 29 3 N/A
10 23 3 N/A
9 45 17 N/A
8 44 15 1

7 74
62 N/A
62 N/A

6 13

2 N/A
3 N/A
4 N/A
5 N/A

5 81
66 N/A
67 N/A

4 69 36 N/A

3 40

1 N/A
2 N/A
3 N/A
4 N/A
5 N/A

2 72 19 N/A
1 20 2 N/A

In most cases, the previous defects/bugs is an indicator of
some sort of risk and thus is used in the predictive models. For
example, Zimmerman et al. showed that the number of previous
bug fixes correlates with the faults in the future versions [1].
In the context of testing, history-based risks are defined mostly
for regression testing [6]. Basically, a risky test case is the one
that use to fail in the past. This is very similar to the "previous
bug" metric used in the bug prediction studies. Therefore, in
this paper we use it as a baseline of comparison (traditional
risk).

Risk-driven testing analyses different risk factors on the
System Under Test (SUT) and ensures better test process
execution in all of its phase, i.e., test planning, design,
implementation, execution and evaluation [7]. For example,
Shihab et al. [8], used a traditional risk metric for creating
unit test for legacy systems. Kim and Porter also have used a
traditional risk measure for prioritizing test cases in the context
of regression testing [6].

In most cases, the risk should be defined explicitly and
manually added to the tests or to the models that the tests are
going to be generated from. Yoon and Choi have proposed risk
measures to be determined by the domain experts from the
risk management process and prioritize test cases accordingly
[9]. However, it requires manual effort. Kloos et al. proposed

a model based testing Using Fault-Tree analysis where the test
cases are selected and prioritized based on the severity of risk
values and the event that triggers the risk [10]. In this paper,
we try to automatically extract the risk factor and assign it to
the test cases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have explained how the analysis of test
case historical execution traces could help us to introduce a
similarity-based risk measure. The measure showed promising
results on 10 versions of two open source projects, in terms of
risk-driven test prioritization. The similarity-based risk measure
introduced in this paper can be implemented in many different
ways, depending on the similarity function being used. Though
our initial and simple implementation in this paper was very
promising, we are planning to investigate other similarity
functions, specifically those that account for the the method
orders in the trace. In addition, this project is a sub-project of
a bigger research on risk-driven model-based testing, where we
are planning to extract specification models of the system and
augment them with the similarity-based risk measures. Those
models can later be used in both risk-driven test generation
and prioritization.

REFERENCES

[1] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on. IEEE,
2007, pp. 9–9.

[2] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1, pp.
35–45, 2007.

[3] R. Just. (2014) Defects4j: A database of existing faults to
enable controlled testing studies for java. [Online]. Available:
http://homes.cs.washington.edu/~rjust/defects4j/

[4] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, 2014, pp. 437–440.

[5] N. E. Fenton and M. Neil, “A critique of software defect prediction
models,” Software Engineering, IEEE Transactions on, vol. 25, no. 5,
pp. 675–689, 1999.

[6] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Software
Engineering, 2002. ICSE 2002. Proceedings of the 24rd International
Conference on. IEEE, 2002, pp. 119–129.

[7] M. Felderer, M.-F. Wendland, and I. Schieferdecker, “Risk-based
testing,” in Leveraging Applications of Formal Methods, Verification and
Validation. Specialized Techniques and Applications. Springer, 2014,
pp. 274–276.

[8] E. Shihab, Z. M. Jiang, B. Adams, A. E. Hassan, and R. Bowerman,
“Prioritizing the creation of unit tests in legacy software systems,”
Software: Practice and Experience, vol. 41, no. 10, pp. 1027–1048,
2011.

[9] H. Yoon and B. Choi, “A test case prioritization based on degree of
risk exposure and its empirical study,” International Journal of Software
Engineering and Knowledge Engineering, vol. 21, no. 02, pp. 191–209,
2011.

[10] J. Kloos, T. Hussain, and R. Eschbach, “Risk-based testing of safety-
critical embedded systems driven by fault tree analysis,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 2011, pp. 26–33.

16

