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Abstract—Nowadays with growth of information technologies,
organizations are constantly collecting information about individ-
uals. Public availability of these datasets can considerably benefit
the society. To ensure data privacy of a released dataset, various
privacy models have been introduced. While many privacy models
and techniques have been proposed for data sanitization, the
area of sanitized data evaluation has received less attention. This
paper investigates the four most well-known data privacy models:
k-anonymity, l-diversity, t-closeness, and ε-differential privacy.
We evaluate the data utility (usefulness of sanitized data) and
the disclosure risk (re-identification risk of an individual) of the
sanitized data for each model. We use a combination of several
data utility and risk metrics to measure the impact of a privacy
parameter (e.g., k, ε) on a particular privacy model. This enables
us to compare the risk-utility tradeoff of semantic privacy models
such as ε-differential privacy to the early syntactic models such as
k-anonymity on the same scale. We used the Adult dataset from
the UCI machine learning repository to conduct our experiments.
Experimental results show that ε-differential privacy outperforms
other privacy models in terms of both data utility and disclosure
risk.
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I. INTRODUCTION

Gradually, various entities such as research organizations
and businesses are making their data, which are collected
from individuals, publicly available. The availability of such
data can significantly benefit society and in particular medical
research, such as identifying causes of certain diseases and ef-
fectiveness of the treatment. However, most of these databases
contain confidential information of individuals which cannot
be published due to the risk of privacy breach. Each record in
the database consists of some sensitive attributes (i.e., disease
and income) and some quasi-identifiers (i.e., zip code, age
and sex) that maybe combined together in order re-identify an
individual. Therefore, these datasets must be sanitized before
public release.

There have been many proposals for privacy models [1],
[2], [3], [4] that attempt to formalize the notion of data privacy.
k-anonymity [5], [6] is the first notable proposed model in the
literature for relational databases and it uses the concept of
generalization to provide privacy. The core idea is to ensure
that there are at least k records with respect to quasi-identifiers.
l-diversity [2] is then introduced to address the limitations
of k-anonymity. In particular, l-diversity ensures that each
equivalent class of the sanitized dataset is well-diverged so
that an adversary is unable to launch homogeneity or back-
ground knowledge attack. The privacy model t-closeness [3]
further refines the concept of diversity and requires that the

distribution of the sensitive values of each equivalent class be
as close as to the overall distribution of the dataset. Dwork
et al. [4] has introduced ε-differential privacy which ensures
that adding or removing a single individual record does not
significantly impact the outcome of any an analysis There are
a number of other privacy models [7] with little variations.

Challenges. Data sanitization techniques, prior to data
release, modify an original dataset into a distorted version in
order to decrease the disclosure risk while keeping the data
utility as high as possible. A fundamental problem in privacy
preserving data publishing is identifying the right tradeoff
between disclosure risk and utility. While many privacy models
and techniques have been proposed for data sanitization, the
area of sanitized data evaluation has received less attention.
The problem of evaluating risk-utility tradeoff of the sanitized
data has several challenges. Achieving the right risk-utility
tradeoff requires answering the following questions:

1) What parameter should be selected for a particular
privacy model?

2) What is the risk-utility tradeoff for various privacy
models with different parameters?

This paper proposes an analytical framework that over-
comes the above challenges. In particular, we evaluate four
most studied privacy models (as mentioned before) in terms
disclosure risk and data utility. Our framework can also be
used to evaluate other privacy models.

Current Technique. Cormode et al. [8] is the only known
work that addressed these challenges by introducing a general
notion of empirical privacy and utility, and compared tradi-
tional privacy models with differential privacy by varying the
respective parameters of each model. They concluded that the
difference between these models is quite less dramatic than it
has been assumed.

Our Contributions. Unlike [8], we have defined the notion
of risk in terms of uniqueness which is the most commonly
used risk metric employed for real-life applications [9], [10].
In addition, we have utilized multiple utility metrics: KL-
divergence, average equivalence class size, and height (see
Section III for more discussion) for evaluating risk-utility
tradeoff of various privacy models.

The proposed framework studies the tradeoff between
disclosure risk and data utility of various privacy models by
comparing them on a single scale. This allows a data owner
to determine the effectiveness of various privacy models and
facilitates the choosing of a privacy parameter for a particular
privacy model. Finally, we conducted extensive experiments
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using real-life dataset from the UCI machine learning repos-
itory. Experimental results show that ε-differential privacy
outperforms other privacy models in terms of both data utility
and disclosure risk.

Organization. The rest of the paper is organized as fol-
lows. Section II reviews related works. Descriptions of privacy
and utility metrics and the proposed risk-utility tradeoff frame-
work are described in Section III. Section IV experimentally
evaluates various privacy models using our framework in a
single scale. Section V concludes the paper and points out
some directions for future work.

II. RELATED WORK

Cormode et al. [8] proposed a unified framework to
compare various privacy models by formalizing the notion of
empirical privacy and utility. They concluded that no particular
privacy model has an advantage over other models in terms
of risk-utility tradeoff. Their work [8] is the closest risk-
utility tradeoff evaluation to our proposal with the difference
that they have used single risk (privacy breach increase) and
utility (relative query error) metrics while in this work we
have examined the risk-utility tradeoff with respect to multiple
metrics (details are presented in section III). Moreover, we
measure risk using uniqueness which is the most accepted
notion for evaluating disclosure risk [9].

Li et al. [11] utilized modern portfolio theory for financial
investment and proposed a privacy-utility tradeoff model for
data publishing. They have concluded that it is inappropriate to
directly compare privacy with utility. Feinberg [12] used log-
linear model to measure the risk-utility tradeoff for releasing
contingency table with differential privacy guarantee. Risk
was measured in terms of the protection for small counts
in a contingency table. Utility was measured with respect to
noise added to provide differential privacy. Khokhar et al.
[13] measured risk-utility tradeoff by quantifying privacy in
terms of monetary value. They propose a cost model that takes
into consideration the monetary cost due to potential privacy
breaches.

Moreover, Duncan et al. [14] introduced R-U Confiden-
tiality Map as an illustration to trace the impact of several
de-identification methods and their parameters. Teng et al.
[15] compared k-anonymity and randomization technique by
adapting R-U confidentiality map. Loukides et al. [16] also
used R-U Confidentiality Map [17] to measure the risk and
utility for transaction data sharing. Domingo-Ferrer et al. [18]
measured the risk and utility of sanitized data using infor-
mation theory. Dasgupta et al. [19] introduced a visualization
approach to measure the risk-utility tradeoff various privacy
models. Though closely related, all these works (except [8])
don’t compare all privacy models in a unified framework (
Figure 5 in Section IV).

III. METHODOLOGY

In this section, we present our method for analyzing risk-
utility tradeoff of sanitized data. We have defined the risk-
utility tradeoff by considering privacy as an individual concept
(privacy of each individual must be protected) and utility as
an aggregate concept (utility is gained if knowledge about a
large group of individuals is learnt).

For each sanitized dataset, we measure its disclosure risk
and data utility. First, we analyze the impact of a privacy
parameter of a model (i.e., k of k-anonymity model) on
disclosure risk and data utility, separately. Second, we obtain a
sets of (risk (R), utility (U)) points for each sanitized dataset.
We then plot the (R, U) points on a 2-dimensional graph like R-
U Confidentiality Map [14], where x-axis represents a privacy
model’s disclosure risk (average re-identification risk) and y-
axis depicts its data utility (information loss).

In order to measure disclosure risk and data utility, we need
to fix metrics. In this paper, we have utilized multiple well-
known and industry wide accepted data utility and disclosure
risk metrics. In the next two subsections, we present these
metrics.

A. Data Utility Metrics

In this section, we present several data utility metrics: KL-
divergence, normalized average equivalence class size, and
height.

1) Kullback–Leibler Divergence [20]: Kullback–Leibler or
KL-divergence is a metric for finding the distance between two
frequency distributions. In the context of utility, it is used to
find the distance between distribution of a sensitive attribute in
an equivalence class and the distribution of the same attribute
in the whole dataset. In other words, it denotes the amount of
information loss when the distribution of a sensitive attribute in
the whole dataset is used to approximate the distribution of the
same attribute in an equivalence class. In our experiment we
have utilized KL-divergence to measure the distance between
distributions of sensitive values of original (Q) and sanitized
(P) data sets.

D(KL) =
∑
i

P (i) log
P (i)

Q(i)
(1)

KL-divergence measures the logarithmic differences be-
tween discrete probability distributions of P and Q for all
i (absolute continuity).

2) Normalized Average Equivalence Class Size [6]: Aver-
age equivalence class size measures information loss based
on the size of the equivalence classes resulting from data
sanitization. The intuition behind this metric is that the bigger
the size of an equivalence class, the smaller the utility of the
sanitized data. Thus, it measures the utility loss resulting from
the generalization or suppression of values.

C(AV G) =
T
H

K
(2)

Here, T is total number of records, H is total equivalent
classes and K is the privacy model constraint.

3) Height [21]: This metric takes into consideration the
height of the hierarchy tree of all quasi-identifier attributes.
Figure 1 shows sample hierarchy trees for attributes Job and
Age. It measures information loss based on sum of the applied
generalization level. Utility depends on generalization height
for different attributes in the QD.



Fig. 1. Sample Hierarchy Tree for Generalization

H =
∑
i

Li

Hi − 1
(3)

Here, Hi is the height of the hierarchy tree for attribute i
and Li is the applied level of generalization for the sanitized
data. The information loss increases as we apply higher
level of generalization. In particular, for each higher level of
generalization, the information lose factor is 1/H − 1. Thus,
the information loss is 0 for the leaf nodes and 1 for the root
node.

B. Disclosure Risk Metrics

1) Uniqueness: Sanitization of dataset prior to publication
is a common approach to protect individuals data. One of
the most common attack is identity linkage attack, where a
sanitized dataset is linked with public records. Uniqueness, in
this context, is a metric for measuring re-identification risk of
an individual.

Population uniqueness is a commonly utilized measure of
re-identification risk [22] [23]. In the simplest definition, if
there is an equivalence class of only one record then that record
is considered unique. Unique records are more likely to be re-
identified than non-unique records [24]. Uniqueness [10] can
be measured in several ways. Mainly, it is the probability of
record being unique in the original dataset [25].

Another approach would be measuring proportion of
records in the public dataset that are unique. The following
equation measures the proportion of records in a given dataset
(i.e., voter registration list) that are unique [10]:

λ =

∑
i I(Fi = 1)

N
(4)

I is an indicator function. I(Fi = 1) is 1 if the record is
unique in the corresponding equivalence class, and 0 otherwise.
Having said that, it is not possible to measure uniqueness
precisely, therefore it should be estimated.

2) Estimating Uniqueness: Various models have been pro-
posed in the literature to estimate the uniqueness of a sample
dataset. Dankar et al. [10] conducted an experiment and
applied Pitman [26], Zayatz [27] and SNB [28] uniqueness
estimators on a clinical dataset and concluded that there was
no single estimator that performed well across all conditions.
Pitman estimator was the most accurate of all but only for
low sampling fractions, while the SNB and Zayatz performed
equally accurate for the higher sampling fraction. Hence, a

decision rule has been adopted which chooses appropriate
models based on sampling fraction. We use this to estimate
the uniqueness in our experiments.

IV. EVALUATION

We have used Adult dataset from UCI Machine Learning
Repository (which is multivariate and it has been widely
adapted in previous studies) in our evaluations. The data
contains 45,222 records with 30,162 trained tuples and 15,060
test tuples.

A. Experiment Setup

We have considered income level, work hours per week,
sex, education and work-class as quasi-identifiers, and oc-
cupation as sensitive attribute. We have utilized ARX [29]
data anonymization tool in order to evaluate k-anonymity,
l-diversity, t-closeness, and ε-differential privacy. We have
executed and analyzed the impact of each data utility and
disclosure risk metric per privacy model with various pa-
rameter values. For measuring re-identification risk, we have
executed each experiment 10 times and reported the average
re-identification risk in Figures 2 and 5.

ARX is a comprehensive data anonymization tool that pro-
vides both utility and re-identification risk analysis module. We
have used default configurations for de-identification process
except for privacy crietria and utility measure. In addition,
we have specified the generalization hierarchy for each quasi-
identifier attribute in Adult dataset. All the experiments were
conducted on a 2.29GHz CPU with 8GB dedicated RAM.

B. Impact Analysis

We have examined the re-identification risk (uniqueness)
for each privacy model. Figure 2 shows the impact of changing
k, l, t, and ε for respective privacy models. Experiment results
show that ε-differential privacy outperforms other models in
terms of average re-identification risk (< 2%).

Figure 3 demonstrates the impact of parameter values on
utility loss measured by KL-divergence metric. t-closeness
(EMD= 0.45) provides about 80% information (i.e., 20%
information loss) while maintaining low re-identification risk
(< 10%). These experiments can be used by a data owner
to set the appropriate parameter value for respective privacy
models. For example in order to maintain low re-identification
risk (< 10%) using k-anonymity, the k should be set 4 or
above. Respectively, in order to have better utility (at most
40% information loss) while using t-closeness privacy model,
t value should be set 0.45 and above.

Observation 1: Both ε-differential privacy and t-closeness
provide high utility while maintaining low re-identification
risk.

Figure 4 represents the impact of parameter change on
information loss measured by average equivalence class size.
We are not reporting the detail of experimental results for
utility metrics height as the general trend for these metrics
are similar to KL-divergence for all privacy models.
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Fig. 2. Impact of Parameter Change on Average Re-Identification Risk (Uniqueness)
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Fig. 3. Impact of Parameter Change on Information Loss (KL-divergence)
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Fig. 4. Impact of Parameter Change on Information Loss (Avg. Equivalence Class Size)

Observation 2: Impact of parameter change on information
loss has the same trend for all privacy models considering
various utility metrics (i.e. KL-divergence, height and aver-
age equivalence class size).

C. Comparison of Privacy Models

One of the main objectives of this paper is to com-
pare different models into a single framework (i.e., us-
ing same notion of privacy and utility metric). Fig-
ure 2 and Figure 3 show the performance of each
model, for different parameter values, with respect to
utility and privacy. Using the < Parameter,Risk >
and < Parameter, InformationLoss > pairs from
both chart of a privacy model, we obtain values for <
Risk, InformationLoss >. We are then able to compare
different privacy models on the single plot as shown in Fig-
ure 5: the x-axis represents privacy loss in terms of uniqueness
(average re-identification risk) and y-axis represents utility
in terms of information loss measured by KL-divergence
utility metric. For instance the data points on l-diversity curve
correspond to varying l from 1 to 10. The bottom-left corner
of Figure 5 depicts the ideal sanitization cases which provide
simultaneously high utility and privacy. This makes differential
privacy the best candidate when making a choice between
privacy models.

V. CONCLUSION

In this paper, we studied the risk-utility tradeoff among
various privacy models. We conclude that ε-differential privacy
outperforms other privacy models in terms of both utility
and re-identification risk. However, the difference between
t-closeness and ε-differential privacy is not significant. Our
finding differs from previous study [8] (which concludes that
there is no major differences among privacy models) due to
the use of uniqueness to measure the re-identification risk. We
argue that uniqueness should be used as it is the most widely
used metric for measuring re-identification risk.

Moreover, the results of our experiment can be used by
data owners to not only select the appropriate privacy model
but also facilitates the choosing of a privacy parameter for
a particular privacy model. In the future, we would like to
release a risk analysis tool for sanitized dataset. It will enable
to investigate the risk of released data as a digital forensic tool.
It will also be of interest to measure the risk-utility tradeoff
based on personalized privacy and utility metrics.
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