
Analytics-based Safety Monitoring and Verification

Hadi Hemmati

Department of Electrical & Computer Engineering
University of Calgary
Calgary, AB, Canada

hadi.hemmati@ucalgary.ca

 Syed S. Arefin, Taha R. Siddiqui
Department of Computer Science

University of Manitoba
Winnipeg, MB, Canada

{ssarefin, trsid}@cs.umanitoba.ca

Abstract— Safety-critical systems in domains such as aviation,
railway, and automotive are often subject to a formal process of
safety certification. The goal of this process is to ensure that these
systems will operate safely without posing risks to the user, the
public, or the environment [1]. It is typically expensive and time
consuming for companies to certify their software. Therefore, any
attempt to automate any part of the required process is very
appreciated. In this research project, we report on our on-going
project with an industry partner in the avionics domain, where we
propose a framework to combine specification mining, model-
based testing, and analytics to help with monitoring and
verification of safety critical systems.

Keywords—specification mining; model-based testing; data
analytics; satefy crtical systems; testing, debugging.

I. INTRODUCTION
Avionics software systems are safety-critical

software embedded in an aircraft hardware that
control and monitor the aircraft. Unmanned Aerial
Vehicle (UAV) is an avionics system with no pilot on
board and usually, flown by a pilot at a ground control
station. A UAV can also fly autonomously based on
predefined flight plans using a software called
Autopilot. The Autopilot helps automate the process
of controlling and guiding the aircraft [2].

Aviation software industry observes one of the
highest standards of safety control, where their
embedded software systems go through a set of
rigorous standard checks, before entering to the
commercial market. An autopilot software of an
Unmanned Aerial Vehicle (UAV), is an example of
an avionics software systems, which must be certified
in certain UAV application domains.

In this project, we collaborate with a word-leader
in building autopilot systems for commercial UAVs,
to provide them with novel tools and mechanisms that
help automating several tasks required by standards
such as DO-178C [3]. One of the major demands of
DO-178C is having a set of explicitly written
“software requirements” for the safety critical

software and a set of test cases that verifies those
requirements, plus a mapping between each
requirement and its test cases to provide a two-way
traceability between the requirements and the tests.

To achieve such demands, the high-level goal of
this study is to provide a set of state-of-the-art
techniques and tools to improve the current practice
of requirement generation, program comprehension,
monitoring, testing, and debugging for safety-critical
software systems, in general, and for our industry
partner, in particular. The study consists of four
concrete objectives as follows:

• O1: Providing a semi-automated technique to
help with (safety) requirement generation and
traceability from requirements to test cases

• O2: Automate test generation from
specification and provide a traceability from
test cases and requirements

• O3: Prioritize test cases based on their
historical failures and different coverage
criteria

• O4: Providing a semi-automated technique to
help with fault localization and debugging.

Technically speaking, a set of techniques from
“model-driven engineering” and “data analytics” will
be used to realize the above objectives, in the context
of two sub-projects as follows:

• Project 1 – An Interactive Specification Mining
for Requirement Generation, System monitoring,
and Debugging: In this project, we propose a semi-
automated specification mining technique that is
tailored for our context. The technique resulted in an
interactive tool that not only help developers with
program comprehension and requirement generation,

2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Banff Center, Banff, Canada, October 5-8, 2017

978-1-5386-1645-1/17/$31.00 ©2017 IEEE 3608

but also speeds up the debugging process. This
project will realize O1 and O4.

• Project 2 – Model-based Test Generation and
Prioritization: In this project, we use a combination
of model-based testing and data analytics to
automatically generate test cases that assure high
specification-level coverage. We also use data
analytics techniques to predict failure probability of
test cases and prioritize them based on such
probabilities. This project will realize O2 and 3.

This is an on-going project. Some of the
techniques and tools proposed above are already
implemented and are being evaluated in the company,
by controlled experiments and interviews. In the rest
of this paper, we will explain some detailed about the
proposed tools and techniques and share some initial
feedbacks.

The rest of this paper, is organized as follows: In
Section II, background and related work will be
explained. Section III details the proposed techniques
and tools. Section IV explains the current state of the
project and its future directions. Finally, Section V,
summarizes the paper.

II. BACKGROUND AND RELATED WORK
In this section, the two most relevant topics to this

project (model-based testing and specification
mining) and some related work will be explained.
A. Model-based testing

Model-based Testing (MBT) is an efficient
automated test generation process [4, 5]. This
technique uses the model of the system requirement
and functionality as a basis to generate test cases. It is
an application of model-driven engineering for
software verification and testing.

The goal of the MBT is to automatically generate
executable test cases based on the specification
model. These models represent functionality but also
can include performance, safety, and security
concerns. The MBT process is composed of the
following steps represented in Figure 1.

1) The test designer manually models the system
under test (and if required its environment). While
modeling the system, the designer may focus only on
specific parts (e.g., components, classes, features,
etc.) of the system or specific aspects (e.g.,
functionality, safety, security, performance, etc.) of

the system, (s)he is interested to test. The narrow
focus typically increases the scalability of the
technique.

2) The MBT tool automatically generates the
abstract tests from the model. To do that the model,
typically, is converted to a graph of some form. Then
a model coverage strategy (a graph traversal
algorithm) is applied on that graph to create a set of
test paths (sequence of nodes and edges). These
abstract test cases identify the scenarios that are going
to be verified.

3) The abstract test cases are too generic and need
language-specific data to be executable. In addition,
to generate executable tests, the MBT tool needs to
add specific input data values for each method call in
a test path (method calls that are invoked along the
execution of the scenario under test). The test data can
be generated randomly or using a more sophisticated
algorithm (e.g., evolutionary search, symbolic
execution, etc. [6]).

4) Finally, the generated test cases are executed
(typically within a test execution framework) and the
outputs are analyzed and reported. This requires the
MBT tool to create test assertions depending on the
expected state of the system, to compare the actual
behavior with requirement of the system (represented
as the specification models).

There are several applications of Model-driven
Engineering in safety-critical avionics systems;
Model-based testing is only one of them. We have
studied several UML-based solutions [7—11] that
can be attributed to capture safety-related information
in UML models, in case they can be a useful add-on
to a typical UML model.

For example, a study conducted by Stallbaum et
al. [12] introduced a new UML profile that can be
used to extend standard UML test models for MBT
with information that is relevant to airworthiness
certification. Those test models can serve as
supporting artifacts of certification in case MBT is
applied. We found that none of the solutions proposed
in this category of studies used an MBT technique to
automate system level test generation. Instead, they
only focused on modeling the system along with the
safety-related information.

3609

In our study, we only use some basic concepts
such as timing from real-time domain which can still
be modeled in UML standard diagrams. So we do not
use any extra profile.
B. Specification mining

Specification Mining [13] is a relatively new
research area in software engineering. It can be seen
as an application of data mining on software
engineering datasets. In the past, several research
projects have targeted the problem of specification
mining as reverse engineering [14—16]. The two
major approaches for software reverse engineering
are static and dynamic analysis.

Briefly described, static analysis uses the source
code or other artifacts as is, without execution. On the
other hand, dynamic analysis approach works by
executing the real code to get execution traces and
then mining specifications from them.

It requires instrumenting the source code to get
logs from real execution in the form of traces.
Execution traces typically consist of sequences of
method calls, and other related information. These
sequences can be generated by instrumenting the

program and running the system with different inputs
(different scenarios), the more the better, to cover the
overall behavior of the system and hence producing
correct and valid specification of the system.

Higher coverage of the test inputs generates more
accurate and complete specification models. It not
only helps modelling behavior of a software system,
but is also extremely useful for a wide range of
software engineering tasks, such as software
validation and verification, anomaly detection [17],
test case generation [18], etc.

III. PROPOSED METHODOLOGY
The overall goal of this proposal is helping safety

critical software companies with getting certifications
such as DO-178C. The focused areas of the project
are on verification and monitoring. Figure 2
illustrates the high-level idea of this proposal.

The following six steps are involved in this
methodology:

Figure 1 Steps of Model-based Testing (MBT) Technique

3610

1) Seting up the abstraction-level and verification
aspects

At this first step, the domain expert decides what
aspects of the system should be monitored and
verified. The experts define this by selecting a set of

state variables from a given list. These variables
define what states should be extracted at runtime.

2) Mining the initial specification models
The interactive specification mining tool will

generate a state machine representation of the system
under test, by running the system with a set of initial
test cases. The tool logs the execution traces using a
profiler tool and finally abstracts the execution traces
into state machines, where the states are identified by
the important changes in the selected state fields.

3) Model validation and augmention
In this step, the engineers need to validate the state

machines and define a test strategy (e.g. all node
coverage). They also have to create the explicit
requirements based on the mined behavior and map
the requirements with paths or states in the state
machine.

Note that though this step is manual but the fact
that the engineer/developer/analyst creates

requirements and safety cases by looking at the high-
level models rather than low-level code base already
helps speed up process and might improve the
precision as well.

IV. PROPOSED METHODOLOGY
The overall goal of this proposal is helping safety

critical software companies with getting certifications
such as DO-178C. The focused areas of the project
are on verification and monitoring. Figure 2
illustrates the high-level idea of this proposal.

The following six steps are involved in this
methodology:

Figure 2. The combined specification mining and model-based testing strategy

3611

1) Seting up the abstraction-level and verification
aspects

At this first step, the domain expert decides what
aspects of the system should be monitored and
verified..

The experts define this by selecting a set of state
variables from a given list. These variables define
what states should be extracted at runtime

2) Model-based test generation
Beside helping with requirement generation, the

generated models from step 3 are also used for
automatic test generation [19]. A model-based testing
tool will get the models as input and generates
executable test cases as output. It can also measure
code coverage and other relevant metrics.

3) Monitoring and debuging aids
In this step, the validated models of step 3 will be

fed back to the specification mining tool to extract
low-level state machines for debugging purpose.

Basically, for any reported issue, the QA team can
run the specification mining tool for the relevant test
cases and get as detailed as desired state machine
(again using the interactive abstraction set up,

explained in step 1). Such state machines can also be
generated for older versions of the same feature. Then
the QA engineer will compare the two state machines
to root cause and debug the issue.

4) Analytics-based moedel augmention and test

prioritization
The framework will also keep track of all test

failures and issues [20, 21]. This information can later
on be used for predicting which components of the
system are more error-prone and high-light the test
cases that are more likely to fail. So that in cases
where the testing budget is restricted, one can only
execute the most important tests. This information
can also be integrated back into the model so that the
engineers can refine their test plans and safety cases.
Figure 3 summarizes this step.

V. CURRENT STATUS AND FUTURE DIRECTIONS
In collaboration with our industry partner, we

already have implemented the model-based testing as
well as the specification mining tools. At this current
moment, we are evaluating the specification mining
tool with a series of interviews with the developers at
the company.

Figure 3. Overview of Fault Augmentation

3612

The next step will be evaluating the model-based
testing tool and then combining the two tools into one
framework. Finally, we need to add the analytics
engine for augmenting the fault information.

The initial feedback from industry was quite
promising and encouraging to continue in this
direction.

Though we have applied this idea on a software-
centric system, but the overall strategy can be applied
on any embedded system with the ability on logging
the execution events [22, 23]. This will particularly
be useful for monitoring and debugging of any safety-
critical system.

VI. SUMMARY
This paper reports on an on-going project where

specification mining, model-based testing, and data
analytics techniques are used for generating and
augmenting specification models of a system under
test. These models are then used for test generation.
The overall, idea is that the proposed semi-automated
approach for behavior extraction will help the QA
engineers to build a functional model of their system
and makes the representation of safety goals more
accurate but also faster. In addition, the automated
test generation engine will verify those functionalities
and/or safety cases. The current project is tailored for
a specific embedded software, but can be generalized
to be applicable for monitoring and verification of
most safety-critical systems.

REFERENCES
[1] S. Nair, J. L. De la vara, M. Sabetzadeh, L. Briand, “An extended

systematic literature review on provision of evidence for safety
certification”, Information and Software Technology, vol: 56, no:
7 689-717, 2014.

[2] Automated Flight Controls. www.FAA.gov. Federal Aviation
Administration. (Retrieved 19 August 2016).

[3] DO-178C, Software Considerations in Airborne Systems and
Equipment Certification. Washington, D.C., USA, December
2011.

[4] J. Offutt, and A. Abdurazik. “Generating tests from UML
specifications”, International Conference on the Unified
Modeling Language. Springer Berlin Heidelberg, 1999

[5] H. Hemmati, A. Arcuri, and L. Briand. “Achieving scalable
model-based testing through test case diversity”, ACM
Transactions on Software Engineering and Methodology
(TOSEM) 22.1 (2013): 6.

[6] S. Ali, L. Briand, H. Hemmati, R.K. Panesar-Walawege, “A
systematic review of the application and empirical investigation
of search-based test case generation”, IEEE Transactions on
Software Engineering 36.6 (2010): 742-762.

[7] G. Zoughbi, L. Briand, and Y. Labiche, “Modeling safety and
airworthiness (RTCA DO-178B) information: conceptual model
and UML profile”, Software & Systems Modeling 10.3 (2011):
337-367.

[8] G. Zoughbi, L. Briand and Y. Labiche, “A UML Profile For
Developing AirworthinessCompliant (RTCA DO-178B) Safety-
Critical Software,” Carleton University, Technical Report SCE-
05-19, December, 2006.

[9] M.A. de Miguel, J.F. Briones, J.P. Silva, and A. Alonso,
“Integration of safety analysis in model-driven software
development,” IET Software, vol. 2, no. 3, Jun. 2008.

[10] K.T. Hansen and I. Gullesen, “Utilizing UML and Patterns for
Safety Critical Systems,” Proc. Workshop on Critical Systems
Development with UML, in conjunction with the International
Conference on the UML, 2002.

[11] J. Jürjens, “Developing Safety-Critical Systems with UML,”
Proc. International Conference on the UML, LNCS 2863, pp.
360-372, 2003.

[12] H. Stallbaum, and M. Rzepka, “Toward DO-178B-compliant Test
Models." Model-Driven Engineering”, Verification, and
Validation (MoDeVVa), 2010 Workshop on. IEEE, 2010.

[13] C. Liu, ed. “Mining software specifications: Methodologies and
applications”, CRC Press, 2011.

[14] T. Ziadi, et al., “Towards a language-independent approach for
reverse-engineering of software product lines”, Proceedings of
the 29th Annual ACM Symposium on Applied Computing.
ACM, 2014.

[15] H. Bruneliere, et al., “Modisco: A model driven reverse
engineering framework”, Information and Software Technology
56.8 (2014): 1012-1032.

[16] S. Hassan, et al., “Software Reverse Engineering to Requirement
Engineering for Evolution of Legacy System”, IT Convergence
and Security (ICITCS), 2015 5th International Conference on.
IEEE, 2015.

[17] A. Valdes, K. Skinner, “Adaptive, model-based monitoring for
cyber-attack detection”, In: Recent Advances in Intrusion
Detection, Springer, pp 80–93, 2000.

[18] R. Taylor, M. Hall, K. Bogdanov, J. Derrick, “Using behavior
inference to optimize regression test sets”. In: Testing Software
and Systems (ICTSS’12), Springer, pp 184–19, 2012.

[19] A., Shaukat, H. Hemmati, “Model-based testing of video
conferencing systems: challenges, lessons learnt, and
results”, Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on. IEEE, 2014.

[20] T. Bin Noor, H. Hemmati, “Test case analytics: Mining test case
traces to improve risk-driven testing”, Software Analytics
(SWAN), 2015 IEEE 1st International Workshop on. IEEE, 2015.

[21] T. Bin Noor, H. Hemmati, “A similarity-based approach for test
case prioritization using historical failure data”, Software
Reliability Engineering (ISSRE), 2015 IEEE 26th International
Symposium on. IEEE, 2015.

[22] W. Shang, et al. “Assisting developers of big data analytics
applications when deploying on hadoop clouds”, Proceedings of
the 2013 International Conference on Software Engineering.
IEEE Press, 2013.

[23] H. Malik, H. Hemmati, and A.E. Hassan, “Automatic detection of
performance deviations in the load testing of large scale
systems”, Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013.

3613

