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ABSTRACT

Safety-critical software systems in the aviation domain, e.g., a UAV

autopilot software, needs to go through a formal process of certifica-

tion (e.g., DO-178C standard). One of the main requirements for this

certification is having a set of explicit test cases for each software

requirement. To achieve this, the DO-178C standard recommends

using a model-driven approach. For instance, model-based testing

(MBT) is recommended in its DO-331 supplement to automatically

generate system-level test cases for the requirements provided as

the specification models. In addition, the DO-178C standard also

requires high level of source code coverage, which typically is

achieved by a separate set of structural testing. However, the stan-

dard allows targeting high code coverage with MBT, only if the

applicants justify their plan on how to achieve high code coverage

through model-level testing.

In this study, we propose using the Modified Condition and

Decision coverage (“MC/DC”) criterion on the specification-level

constraints rather than the standard-recommended “all transition

coverage” criterion, to achieve higher code coverage through MBT.

We evaluate our approach in the context of a case study at Mi-

croPilot Inc., our industry collaborator, which is a UAV producer

company. We implemented our idea as an MC/DC coverage on tran-

sition guards in a UML state-machine-based testing tool that was

developed in-house. The results show that applying model-level

MC/DC coverage outperforms the typical transition-coverage (DO-

178C’s required MBT coverage criterion), with respect to source

code-level “all condition-decision coverage criterion” by 33%. In

addition, our MC/DC test suite detected three new faults and two

instances of legacy specification in the code that are no longer in

use, compared to the “all transition” test suite.
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1 INTRODUCTION

Avionics systems are safety-critical systems embedded in an aircraft

hardware that controls and monitors the aircraft. The Unmanned

Aerial Vehicle (UAV) is an avionics system with no pilot on board. A

software, called autopilot, helps automate the process of controlling

and guiding the UAV’s navigation [2] . Safety critical systems in

aviation, railway, and automotive domains often face a formal safety

certification process. The safety certification ensures systems’ safe

and risk-free operations. The certification also ensures that the

system will not cause any harm to its user, general public or the

environment [21]. To prevent catastrophic effects, the regulatory

authorities and the avionics industry have defined DO-178C [23], a

rigorous certification standard for avionics systems.

MicroPilot Inc. [20] (our industrial partner in this project) is a

commercial UAV manufacturer, which needs this certification for

their avionics systems. Their autopilot system is developed using

embedded system C code under the Visual Studio development en-

vironment. The certification standard provides a list of suggestions

both on the process of software development and on the final prod-

uct metrics. One of the major demands of DO-178C is having a set

of explicitly written “software requirements” for the safety critical

software and a set of test cases that verifies those requirements

(requirement coverage). The test cases are also required to provide

high source code coverage (structural coverage), e.g., in terms of

statement coverage, decision coverage, and Modified Condition and

Decision (MC/DC) coverage [23].

The DO-178C standard recommends following model-driven

engineering (MDE) to achieve high requirement coverage, which

is explained in a supplement document (DO-331). MDE’s proposal

for automated test generation is called Model-Based Testing (MBT).

MBT accepts a specification model of the software under test as an

input and generates test cases that verify all the requirements spec-

ified in the model and covered by a model-level coverage criterion

(such as “all-transition” coverage on state machine models).

Given that an applicant of DO-178C is very likely to follow DO-

331 recommendation and implement MBT to achieve requirement

coverage, one of the FAQs noted in DO-331 is: “May the applicant use

the model coverage analysis activity to achieve the structural coverage

analysis objectives?”. The standard’s answer to this question, in

short, is YES but only if the applicant can show that the structural

coverage objectives have been achieved. In other words, there is
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no guarantee that a test suite generated by the recommended MBT

will cover “enough” of the source code.

To examine how well MBT test suites cover the source code

and whether one can use MBT to also achieve high structural code

coverage, in this paper, we propose leveraging specification model

constraints and targeting MC/DC coverage on the model-level,

to achieve higher code coverage. The motivations for this idea is

that the constraints in the model, eventually, will be translated

into source code level conditions. Therefore, imposing a model

constraint-level coverage will result in higher “all condition/deci-

sion” coverage of the underlying source code as well. This probably

would not happen by a simple “all-transition” coverage on the spec-

ification level, which is recommended as a default for MBT in the

standard.

To empirically evaluate this idea, we have conducted an ex-

periment in our industry collaborator’s site. We have an ongoing

research collaboration with MicroPilot since early 2016, where one

of our projects is on automated test generation using MBT, to par-

tially satisfy DO-178C requirements. Throughout that project we

have developed an in-house MBT tool that accepts manually de-

veloped state machine representations of the system as input and

automatically generates executable system-level test cases. The de-

fault coverage criterion of the MBT tool, according to the standard,

is “all-transition” coverage.

In this study, we have implemented the concept of MC/DC on

the state machine constraints and compared its source code level

coverage and defect detection ability with those of the default cri-

terion. The experiment compares test suites of the two approaches

when applied on a state machine representing one representative

flight command’s behaviour. The results show that, the proposed

approach achieves an extra 65% MC/DC model constraint coverage

compared to MBT’s default criterion. This results in an extra 33.5%

coverages of all conditions/decisions in the source code and detects

three new faults in the system plus two legacy specifications that

are no longer in use.

2 BACKGROUND

In this section, model-based testing, MC/DC code coverage criteria,

and search-based test data generation will be very briefly explained.

2.1 Model-Based Testing

The objective of Model-Based Testing (MBT) [13] is to automatically

generate executable test cases based on the system specification

models. These models typically represent functionality but also

can include performance, safety, and security concerns. The MBT

process is composed of the following steps:

• The test designer manually models the system under test

(and if required its environment), as specification models

(e.g., UML state machines).

• The MBT tool automatically generates abstract test cases

from the model, by applying a model coverage strategy (e.g.,

covering all states or transitions in a state machine) to create

a set of test paths. These test paths identify the scenarios

that are going to be verified.

• The abstract test cases are too generic and need language-

specific data to be executable. In addition, to generate exe-

cutable tests, the MBT tool needs to add specific input data

values for each method call in a test path and system settings,

which will be discussed in the search-based test generation

section.

• Finally, the generated test cases are executed (typicallywithin

a test execution framework) and the outputs are analyzed

and reported.

2.1.1 Modified Condition/Decision Coverage (MC/DC). One of

the well-known code coverage criteria is Decision coverage, which

represents what percentage of source code branches has been cov-

ered by a test suite. Condition/Decision (C/D) coverage is stronger

version of Decision coverage, where not only all decisions are

counted by also all individual conditions in a decision. This cov-

erage criterion ensures the possible outcome of each condition of

the decision are tested at least once. Modified Condition/Decision

Coverage (MC/DC) criterion is a modification of C/D coverage pro-

posed by the safety certification [23]. Unlike C/D it emphasizes on

independent effect of each condition of each decision. To meet the

MC/DC criterion, a test suite must meet all the followings:

(1) Every point of entry and exit in the programmust be invoked

at least once.

(2) Every condition in a decision in the program must take all

possible outcomes at least once.

(3) Every decision in the program must take all possible out-

comes at least once.

(4) Each condition in a decision must show independent effect

in the decision’s outcome.

To show a condition’s independent effect on a decision’s outcome

one can vary just that condition while keeping all the other possible

conditions fixed. Note that MC/DC is a weaker version of all C/D

coverage criterion.

2.2 Search-Based Test Data Generation

Search Based Test Data Generation is an approach that transforms

test data generation problem into optimization problems [12], where

the objective of the test generation is implemented by a fitness func-

tion that guides the search. Among the many meta-heuristic search

techniques used for test generation, Genetic Algorithms are perhaps

the most common [3]. In a Genetic Algorithm, randomly selected

candidate solutions are evolved by applying evolutionary operators,

such as mutation and crossover, resulting in new offspring individ-

uals, with better fitness values. An example objective function for

unit test generation is the whole test suite’s code coverage [5].

(1+1) Evolutionary Algorithm (EA) is a very basic and simpler

search algorithm, compared to the genetic algorithms. In this algo-

rithm the population size is one and after mutation a new individual

is created. The newly created individual competes with it’s par-

ent to become the parent of next generation. We will explain this

algorithm in more details in Section 4.4.1
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Table 1: Modified Condition/Decision Coverage of a Sample

Predicate.

A > B and X > Y and P > Q
Predicate Eval.

A > B X > Y P > Q

1 TRUE TRUE TRUE TRUE

2 TRUE TRUE FALSE FALSE

3 TRUE FALSE TRUE FALSE

4 FALSE TRUE TRUE FALSE

3 THE MC/DC CRITERION ON STATE
MACHINE CONSTRAINTS

As discussed, two typical coverage criteria applied on state-machines

for test generation are “all state coverage” and “all transition cov-

erage”. The DO-178C’s MDE supplement (DO-331) suggests using

“all transition coverage” for state machines (Table MB. 6-1 in [1]).

However, the same table recommends coverage of all decisions for

“logic equations” and Table A7 in DO-178C [23] recommends “all

statement coverage”, “all decisions coverage”, and MC/DC criteria

for structural coverage.

In this section, we apply the concept of MC/DC on the state

machine constraints. This will result in a higher coverage of high-

level logical constraints in the model (which is the direct target of

the criterion), as well as higher structural code coverage such as all

C/D coverage in the source code.

The concept of MC/DC, as explained in Section 2, can be applied

on any decision point which is represented as a boolean expression,

composed of a set of atomic conditions (conditions that can not be

broken into simpler expressions) “AND”ed and “OR”ed together.

This means that for any transition in the state machine that has

a guard predicate one can create a set of test inputs that satisfy

MC/DC on that decision point. To be more specific, if a guard

contains n atomic conditions then it takes n + 1 test cases to cover
all MC/DC conditions of the guarded transition [17]. For example, a

minimum of four test cases is required to meet the MC/DC criterion

for the following guard condition (A > B and X > Y and P > Q),
as shown in Table 1.

However, a test path typically includes several transitions where

each may have a guard predicate. Note that conditions in different

guards in a path can NOT be simply jointed by ‘AND” operator

to create one total predicate for a path. Since these guards will

be evaluated at different times (from different states), it is very

common to have contradictory conditions. For instance, guard 1:

[Speed == 0] and guard 2: [Speed > 0]. Therefore, to generate a full
test suite out of all these predicates, we make a Cartesian product

out of all MC/DC test suites of all guards in the path.

Now if a test path contains P = {p1,p2,p3, ...,pn } guard predi-
cates, then there will be ( |p1 |+1)∗ ( |p2 |+1)∗ ( |p3 |+1)∗ ...∗ ( |pn |+1)
number of MC/DC combinations, where |pn | represents the number
of conditions in predicate pn . To give an example, if a test path has
two guarded transitions as G1: [C1 or (C2 and C3)] and G2: [C4
and (C5 or C6)], then the total MC/DC test paths for this path is

(3+1)*(3+1)=16.

4 EMPIRICAL EVALUATION

In this section we evaluate the proposed approach in the context of

MicroPilot case study.

4.1 Objective

The goal of this study is to investigate the effect of applying model-

level MC/DC coverage on test effectiveness.

4.2 Subject of study

The subject program of this study is MicroPilot’s Autopilot software.

The autopilot software is embedded in different types of UAVs such

as Fixed-Wing, Helicopter, Multi-rotor Blimp, and VTOL (Vertical

Takeoff and Landing). It helps automate different activities in the

process of controlling and guiding of a UAV, such as taking off,

keeping a safe altitude, climbing or descending to a predefined

altitude, heading to an assigned waypoint location, landing on an

assigned location, etc. An autopilot system is also programmed to

handle critical situations such as heavy air turbulence, GPS failure,

sensor failure, engine failure etc. The system can lead itself based

on predefined flight commands or by a Ground Control System

(GCS).

The implementation of MicroPilot’s autopilot system is started

nearly 20 years ago using ANSI C standard. Over time, the code-

base has been evolved extensively and is still being updated day

by day. At MicroPilot, each system feature undergoes a rigorous

unit and system-level testing. In this study, we focus only on the

system-level test generation, though.

Running a system-level test case with the actual hardware is very

expensive. So, those test cases are executed in a controlled simulated

environment. An actual implementation of autopilot software can

run against the simulator, which simulates the sensors and other

environmental elements to observe how the autopilot behaves in

certain circumstances.

In the current practice of system testing at MicroPilot, test en-

gineers manually write the test cases and execute them under the

simulator with the help of a test execution framework. After a test

passes on the simulator it goes to the real hardware execution.

MicroPilot autopilot software has three types of inputs that can

be monitored and manipulated in the simulator: a) flight command

parameters, b) autopilot settings, and c) the sensor inputs. The

autopilot can perform several flight commands. Some flight com-

mands contain parameters (e.g., climb(x) and flyto(x,y)) and some

do not (e.g., takeoff(), circuit() and flare()).

The autopilot is highly configurable by a set of system variables.

These settings are different in different types of vehicles. For ex-

ample, a takeoff rotor speed needs to be defined in a Helicopter

while in Fixed-wing a minimum defined ground speed needs to be

defined for a successful takeoff. Users can modify these settings

to customize and configure autopilot features they need. There

are nearly 29,000 of such input system variables that not only de-

fine autopilot features but also define the communication links to

the ground control systems. All input system variables have corre-

sponding code-level variables. Any change in the system variables

by the simulator immediately changes the code-level variables.

Autopilot senses the environmental data (e.g., temperature, pres-

sure, GPS etc.) using several sensors, which affect the state of the
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autopilot in many ways. For example, the speed of an autopilot

depends on the GPS sensor and current altitude depends on the pres-

sure sensor. Like input fields, sensor fields can also be monitored

and manipulated from the simulator.

The autopilot also keeps another type of variable called state

fields, which reveal information about the current state of the sys-

tem. These fields are accessible through the simulator to monitor

the current state but are not supposed to be modified by the user

(though the simulator allows this feature for debugging purposes).

There are a total of nearly 1,850 state fields in the system. For exam-

ple current speed, current altitude, pitch, roll, yaw etc. State fields

enable test engineers to monitor and test the system’s state compre-

hensively. For example, upon submitting a command climb (150),
the system must maintain a certain pitch angle until it reaches

target altitude of 150 meters.

4.3 Research Questions

RQ1.Howmuchdoes the proposed approach improvemodel-

level constraint coverage? This question investigates the effect

of applying a more demanding coverage criterion on the coverage

of specification logic (represented by model-level constraints). Cov-

ering more of the specification logic, by itself, is a target toward

certification. The higher model-level constraint coverage also im-

plies that there might be a good chance of getting higher code-level

condition coverage, which will be separately investigated in RQ2.

RQ 2. Does the proposed approach improve code cover-

age? This question compares the code-level “all condition-decision”

coverage of two MBT test suites generated by applying “all transi-

tion” and model-level “MC/DC” coverage criteria.

RQ 3. Does the proposed approach detect new bugs? This

question looks at the practical implication of applying the more

demanding criterion and see if “MC/DC” test suite can detect any

new bugs that are undetected by other testings.

4.4 Study Design

4.4.1 Test Data Generation. Each of those combinations de-

scribed in section 3, is a different execution path of the software

under test (SUT). To execute such paths, we need a set of test data.

Since the guard variables are not necessarily the SUT’s input vari-

ables, we need to first identify all input variables. In our case, as

explained in Section 4.2, there are three types of input variables that

can be used as test data: a) flight command parameters, b) autopilot

settings, and c) the sensor inputs.

In general, the input data for transitions on a test path can be

generated either transition-by-transition (each transition at a time)

or all at once in the beginning of the test path. However, in our

autopilot case, the flight command parameters and autopilot set-

tings are set at once before the system starts, assuming the UAV is

fully controlled by the autopilot instead of a ground control system.

Changing these settings in the middle of the flight is unrealistic and

a bad practice. However, the sensor inputs can potentially change

over time during a flight, but given some technical limitations with

simulator during test executions, we preset all test data including

the sensor data at the beginning of each test case execution.

To generate the test data that satisfies the set of MC/DC condi-

tions on the test path, we use a search-based test generation ap-

proach. Our main challenge for applying a search-based approach

for test generation in this study was its cost. That is due to the fact

that firstly the search space is very large. As explained, there are

more than 29,000 autopilot settings and hundreds of sensor inputs

and command parameter (of types boolean, integer, signed integer

and geographical coordinate) for autopilot software. To reduce the

search space, we did a manual dependancy analysis and excluded

many variable that the expert identified as irrelevant. Ideally, we

would like to automate this process using static analysis and slicing

techniques.

Secondly, each fitness evaluation is expensive. In the rest of this

section, we will explain our fitness function in details, but in short,

each individual’s fitness evaluation requires running a test case on

the simulator. Note that these test cases are system-level test cases

and they require setups and have timing constraints that make each

test case execution very costly (several minutes per individual).

Therefore, using an expensive search algorithm (with large popu-

lations and many generations), such as Genetic Algorithm, was out

of question. The alternative less expensive but also less powerful

algorithms that we adopted here were (1+1) evolutionary algorithm

and random search (as a baseline):

(1+1) Evolutionary Algorithm (1+1) EA uses an evolutionary

strategy called mutation rate. The mutation rate controls the inter-

nal change an individual (in our case, a test case) goes through. For

each gene (in our case, each input test data) in an individual (a test

case), a random number in the range of [0-1] is generated. If the

number is less than the mutation rate then the gene encounters a

change (replacing the value of the input with another valid value),

otherwise it is left unchanged.

We have applied a basic (1+1) Evolutionary Algorithm with 50%

mutation rate and with maximum of 200 iterations. Due to the large

search space and the expensive executions, we opt to use a high

mutation rate (50%) that might help exploring the search space

in a fast fashion. We also set the initial individual to the default

settings. If the individual is fit, that is, the fitness function returns

zero, then the individual is taken as the solution and the search

ends, otherwise it undergoes a mutation again. This process keeps

continuing until a termination criterion (in our case 200 iterations)

is reached.

Random Search: To compare the performance of (1+1) Evolu-

tionary Algorithm with a simpler baseline, we also have applied

Random Search algorithm with the same number of iterations. The

search is unguided and it generates a random individual and checks

its fitness (same as (1+1)EA). It returns a solution if found, otherwise

keeps iterating until the maximum iterations is reached.

4.4.2 Fitness Function. We have integrated our approach with

the Micropilot’s autopilot simulator to run the system under test

with the input values an individual represents. During the execution

of a flight, the simulator logs the values of the specified state fields

over time. After the execution, the simulator stores the log in a

file, which means that we can calculate the fitness only after the

execution is over.

The objective of each search is to cover a path with a specific set

of the model constraints. The quality of each individual is measured
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by the fitness function. The fitness function used in our experiment

is based on the common “branch distance” and “approximation level”

concepts [28] in source code-level search-based software testing.

Approximation level guides the search to satisfy guards in the order

their transitions are visited in the test path. This means that, for

instance, an individual that satisfies all the guard constraints except

the last one on the path is fitter than the individual that satisfies

all the guard constraints except the first one. To implement this,

“approximation level” is defined as the number of uncovered guards

from the back of the test path. For instance, if a test path contains

4 guarded transitions <[G1]T1, [G2]T2, [G3]T3, [G4]T4> and the

test case satisfies the first guard (G1) but fail in the second (G2),

then the approximation level for this test case is 3.0, since there are

three guards that are remained unsatisfied by this test case.

Branch distance, however, is defined on only one guard (the

first guard that the test case fails to satisfy) and measures how

far the test case is to satisfy that guard’s condition. In general,

the guards on state machines are in OCL language. Therefore, to

evaluate the fitness function, an OCL-based branch distance would

be required [4]. However, in our case, the constraints were all simple

boolean expressions and thus we followed a basic branch distance

by Tracey et. al. [26].

To calculate a complex guard including ANDs and ORs, we first

convert the guard constraint into a disjunctive normal form (DNF:

∨n
j=1 (∧mi=1 (Ci, j ))) and split it to multiple sub-constraints (conjunc-

tive clauses: ∧m
i=1 (Ci, j ))). For example, a constraint (x or y) and z

splits into two constraints (x and z) or (y and z). So, if any of the
sub-constraints evaluates to true then the main guard constraint is
also true . Therefore, the branch distance of the guard constraint is
equal to the minimum branch distance of any of the sub-constraints.

Bt = minj bt j

where bt j is the normalized branch distance of a sub-constraints
Cj created by splitting the guard constraint Bt (in DNF), on ORs. If
an individual (a test case) covers a bt j then it covers Bt as well.
Since each sub-constraint is a conjunctive clause (∧m

i=1 (Ci, j )),
bt j is calculated by applying Tracey et al. [26]’s functions on each
individual condition (Ci ) in the sub-constraint and then summing
them all. Finally, we need to normalize the value between 0 and 1.

Thus the final fitness of an individual is the sum of branch dis-

tance and approximation level.

F = Bt +AL

where, F is the fitness of an individual. AL is the approximation
level and Bt is the normalized branch distance at transition t .
Since in our case we typically have multiple targets (several

MC/DC combinations to cover), we have also adopted a whole

test suite generation approach from [10]. The idea is that while

evaluating the fitness of an individual for a target, we not only

evaluate that particular target but also all the other targets. This

approach is efficient since an individual might be fit for more than

one target.

4.5 State machine under test

As part of our collaboration with MicroPilot, the first author of the

paper together with a domain expert from the company developed

specification models for the main scenario of autopilot (the flight

command behaviour). The team is now in the process of building

Figure 1: A sample anonymized state machine of the system

under test.

Table 2: Test paths of the sample state machine in Figure 1.

SL Path No. of test cases using

Transition Coverage Proposed Approach

1 init-A-B-C-D 1 34

2 init-A-B-C-A 1 33

3 init-A-B-C-E-F 1 15

4 init-A-B-C-E-D 1 7

5 init-A-B-C-E-G-D 1 51

6 init-A-B-C-E-G-H-I-J-A 1 122

7 init-A-B-C-E-G-H-I-A 1 122

Total 7 384

more models. Our state machine for this study (Fig. 1), which is

anonymized for the confidentiality reasons, contains 7 test paths

shown in table 2 including 12 states, 16 transitions and total 384

MC/DC combinations. Each of those combinations is an abstract

test cases and a target for our search-based test data generator.

4.6 Execution setup

We have applied (1+1) EA to generate test data described in section

4.4.1 for a sample anonymized state machine of the system under

test shown in Fig. 1. We run (1+1) EA and random search in a highly

configured development machine (Intel Core i7 CPU 3.40 GHz 16

GB RAM 64bit OS x64-based processor).

5 RESULTS AND ANALYSIS

In this section, we answer all three research questions asked in

section 4.3 and discuss about the limitations of our approach and

challenges of applying this technique in practice.

5.1 RQ 1. How much does the proposed
approach improve model-level constraint
coverage?

To answer this question, we first applied a (1+1)EA to cover model-

levelMC/DC and compare themodel-level coveragewith the default

“all transition coverage”. The results show that our approach (the

MC/DC test suite) has generated test cases for 250 targets out of

384 targets. Therefore, it has 65.1% MC/DC coverage of model con-

straints as shown in Fig. 2. On the other hand, the traditional “all
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Figure 2: Improved model constraint coverage

transition” coverage generates 7 test cases for the entire state ma-

chine and the MC/DC coverage is 0.02%. So, as expected the answer

is YES! the proposed targeted approach significantly improves the

model constraint coverage.

However, almost 35% of the MC/DC constraints are not covered,

by our approach. So in the rest of this RQ we investigate these

constraints in more detail. We have analyzed all constraints and

categorized them based on the reason for not being covered. The

categories are described as follows:

(1) Satisfied: The search algorithm successfully managed to

find a solution regarding such target.

(2) Not Satisfied: There are conditions that cannot be satisfied

due to the existence of bugs or limitations. We have further

categorized these types of conditions as follows.

I Buggy: Conditions that can not be satisfied due to a bug

in the code. The proper data has been generated and the

test case has been executed but the test FAILs.

II Infeasible: It is not possible to satisfy such target at all

due to conditions that can never be true. Infeasible targets

are typically due to contradictory conditions. But in our

case all our infeasible targets were due to legacy code that

no longer exists. So the feature had been removed but not

completely. The pieces that were left in the code were

e.g., extra conditions in the code that would not have any

effect on behaviour but are not desired because they reduce

readability of the code and perhaps create confusion.

III Limitation of the simulator: There are several sensor

fields that cannot be simulated properly using the simula-

tor. It is possible that a solution for a constraint is feasible

but the search could not generate it because of the simula-

tion’s limitation on manipulating a specific sensor data.

IV Limitation of ourMBTTool: There are some conditions

that cannot be satisfied because of our current MBT ap-

proach, where we, like most other MBT studies, generate

all test data in the beginning of each test and do not change

them during execution. However, sensor fields in our case

study can be potentially changed anytime during the exe-

cution. Therefore, if there exist contradictory conditions

on a path that depends on a sensor field having differ-

ent values during one execution, our tool fails to satisfy

those paths. A proper way of fixing this issue would be

modelling the environment (including sensor fields) sep-

arately and have the two models (SUT vs. environment)

run concurrently, which is in our future work.

V Limitation of the search algorithmandbudget:There

is a feasible solution but the particular search algorithm

fails to find it with the given budget. For example, a solu-

tion can be found using the evolutionary algorithm but

not using random search.

To have a closer look at the effect of the search algorithm on

model coverage, we compare (1+1)EA’s results with a baseline Ran-

dom search algorithm. As discussed earlier in Section 4.4.1, each

fitness evaluation involves integrating the test execution frame-

work and running a test case on the simulator. Due to the cost of

each evaluation, we set a termination criterion of maximum 200

fitness evaluations per target. Given this limit, (1+1)EA needed

26,210 fitness evaluations to try all targets. Note that not all targets

require maxing out the 200 evaluations. Also, some evaluations may

result in a solution for other targets than the one under test, due to

the whole test suite generation approach explained in Section 4.4.2.

To compare (1+1)EA with the baseline, we gave the same fitness

evaluation budget of 26,210 simulator executions to the Random

Search. Note that the clock hour execution time for the two algo-

rithms were slightly different, though. It took (1+1)EA 145 hours

to finish the 26,210 executions, whereas random search spent 149

hours to finish the runs.

This is simply because the two techniques don not necessarily

try the same solutions and thus the run time per test evaluation

may be varied. In particular, in the search space, some invalid input

combinations may cause execution errors and thus more expensive

runs (to recover the system from the error). In (1+1)EA any such

individual will get a high fitness value (=100) thus helping the

search to avoid generating similar erroneous individuals. However,

since the random search is not guided, it might produce more such

erroneous individuals, thus more total execution time.

Table 3 and 4 show the results of (1+1) EA and random search,

respectively.

The effectiveness of these two algorithms are the same except

the paths 5, 6, and 7. With the same amount of budget, (1+1)EA

has finished trying all the targets but the random search has 7

unattempted targets in total. In paths 6 and 7 the targets that are

not attempted by random search are identified either as infeasible

paths or unsatisfied due to the simulator limitations, by (1+1)EA.

Similarly, in path 5, two unattempted targets are categorized as

infeasible, by (1+1)EA. However, there is one target that is satisfied

by (1+1)EA but not attempted by random search.

In summary, (1+1)EA has attempted covering seven more tar-

gets than random search. It also satisfied one more target (250 vs.

249 targets out of 384). The difference between random search and

(1+1)EA suggests that a more effective search strategy with poten-

tially more budget may be able to improve (1+1)EA results, in terms

of model constraint coverage, as well.
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Table 3: Result of (1+1) Evolutionary Algorithm, with 26,210 fitness evaluations budget.

Path# Targets Bug Inf.
Limitation of

Unattempted by EA Satisfied
MBT Tool Sim.

1 34 5 4 4 8 0 13

2 33 4 4 4 8 0 13

3 15 0 2 6 3 0 4

4 7 0 1 2 1 0 3

5 51 1 5 5 17 0 23

6 122 0 13 0 12 0 97

7 122 0 13 0 12 0 97

Total 384 3(unique) 2 (unique) 21 61 0 250

Table 4: Result of Random search, with 26,210 fitness evaluation budget.

Path# Targets Bug Inf.
Limitation of

Unattempted by Ran. Satisfied
MBT Tool Sim.

1 34 5 4 4 8 0 13

2 33 4 4 4 8 0 13

3 15 0 2 6 3 0 4

4 7 0 1 2 1 0 3

5 51 1 3 5 17 3 22

6 122 0 12 0 12 1 97

7 122 0 12 0 10 3 97

Total 384 3(unique) 2(unique) 21 59 7 249

Table 5: Code coverage of the “all transitions” coverage vs. our proposed model-level “MC/DC” coverage.

Source files

Function Coverage Condition/Decision Coverage

Total
All Transitions MC/DC

Total
All Transitions MC/DC

# % # % # % # %

D1 29 0 0% 0 0% 42 0 0% 0 0%

D2 27 0 0% 0 0% 0 0 0 0%

D3 20 0 0% 0 0% 80 0 0% 0 0%

D4 15 0 0% 2 13% 58 0 0% 0 0%

D5 9 0 0% 0 0% 272 0 0% 0 0%

D6 9 0 0% 0 0% 203 0 0% 0 0%

D7 621 1 0% 1 0% 4066 0 0% 0 0%

D8 20 1 5% 1 5% 192 1 0% 1 0%

D9 24 2 8% 2 8% 193 0 0% 0 0%

D10 567 56 9% 75 13% 1992 137 6% 163 8%

D11 418 53 12% 61 14% 6019 535 8% 3168 52%

D12 966 198 20% 211 21% 10022 1071 10% 1143 11%

D13 2437 755 30% 779 31% 41888 10088 24% 11602 27%

D14 2568 820 31% 844 32% 44564 10690 23% 12285 27%

D15 324 168 51% 173 53% 3645 773 21% 873 23%

D16 113 65 57% 65 57% 2201 602 27% 683 31%

D17 271 166 61% 171 63% 3410 773 22% 873 25%

Total 4843 1295 26% 1364 28% 66242 13206 19% 17632 26%

5.2 RQ 2. Does the proposed approach improve
code coverage?

As mentioned in Table 2, the sample state machine contains 7 test

paths, which are covered by 7 test cases using “all transition” cover-

age. Our approach creates 384 target test cases for these 7 paths and

manages to generate concrete test cases for 250 of those targets. We

measure the code coverage of the original 7 test cases (generated by

“all transition” coverage) as well as 250 test cases generated by our

proposed approach (applying model-level MC/DC). To calculate the
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Figure 3: Improved code coverage

code coverage, we used the company’s coverage tool called “Bulls-

eye Coverage” [6] tool. The Bullseye Coverage [6] measures source

code coverage in terms of “function coverage” and C/D coverage.

Ideally, measuring code-level MC/DC would be more interesting

since the standard also asks for it. However, C/D coverage gives a

more detailed level of coverage (all conditions and decisions cov-

erage not just affecting ones as in MC/DC). In addition, finding a

free coverage tool that measures MC/DC for C code was not trivial

either. So we opt for using the company’s existing tool.

Figure 3 summarizes the function and C/D coverage for our

sample state machine. Using the MC/DC model coverage rather

than “all transitions”, the function coverage went up from 1,295

functions to 1,364 functions. That is an extra 69 (10%) functions.

In terms of C/D coverage MC/DC test cases covered 17,632 cases

whereas “all transitions” test cases covered 13,206 combinations.

That is an extra 4,426 (33.5%) combinations of conditions. Note that

this impressive improvements were resulted by only modelling one

flight command (i.e., takeo f f ()) of the system. This definitely limits
the scope of improvement in overall function and C/D coverage.

Table 5 summarizes both function and C/D coverages for the

default (“all transitions”) and improved (“MC/DC”) coverage, across

all files reported by BullseyeCoverage tool. In the overall set up,

there are 4,843 functions and 66,242 C/Ds to cover and even our

improved test suite covers only 28% and 26% of the functions and

C/Ds. Therefore, we expect that a full test suite generated from a

complete model of all flight commands will cover more functions

and C/Ds and bring even more significant improvements.

5.3 RQ 3. Does the proposed approach detect
new bugs?

Though code and model coverage are important from the certifica-

tion point of view, but without a doubt the most important quality

factor of a test suite is its ability to reveal undetected bugs.

In MBT a bug is detected when the behaviour specified in the

state machine does not match with the actual behaviour of the run-

ning system. In this RQ we compare the two model-level criteria’s

effectiveness in terms of detecting new bugs. By a new bug we refer

to a behaviour which was not expected by the domain expert and

was unknown before running the test suite. That means that the

company’s own unit and system-level testing could not catch that

defect.

Our results show that the transition coverage approach did not

detect any new bug, but the proposed MC/DC approach has de-

tected 3 new bugs and 2 wrong legacy specification instances. To be

more precise, the tool has found one fault regarding autopilot con-

figuration, and two faults regarding incorrect code implementation.

Note that in Tables 3 and 4 the detected unwanted legacy codes

are not categories as bugs but they are in the “Infeasible” category.

These cases are typically conditions in the code related to an old

feature which is forgotten to be removed, when the feature’s code

is deleted. So we do not call them defects since one can not cover

the condition and get a failed test (infeasible path), but it is still an

unwanted code that reduces code readability.

Below is a high-level analysis of the detected bugs (the details

are omitted due to confidentiality reasons):

• Bug 1: Configuration: The system under test, autopilot

software, can be embedded in different types of UAV hard-

ware (vehicle) such as Fixed-wing, Helicopter, multi-rotor,

etc. However, there are some configurations that are specific

to the vehicle type. Those configurations are specified using

configuration (VRS) fields. These configuration fields are also

exposed to the users. A wrong configuration will result in a

bug. To be exact, in our sample state machine the condition

VRS .дv = 1 is wrong.
• Bug 2: Incorrect transition constraints: In our case, the
conditions from State C to A and C to D are wrong in the code

(State .tдst > 0 instead of State .tдst > 2 as it is specified in
the model).

• Bug 3: Incorrect transition constraints: Another bug of
the same type (incorrect transition constraints). The con-

dition from State G to D is wrong. The code implements

State .tast > 0 instead of State .tast > 8.

Therefore to summarize RQ3, although, we have used only one

sample state machine to evaluate our approach, as the results show,

the technique was effective to detect new bugs. This approach also

detects wrong specifications which is helpful to detect and remove

legacy code that are obsolete.

5.4 Discussion

In this section, the main challenges that we have faced during this

project will be explained:

Reducing the search space: As discussed, our search space is

very large with thousands of configuration and hundreds of sensor

variables. Searching the entire search space simply was not an

option in our case.

The ideal way to reduce the search space is by knowing the exact

set of internal and external variables that may affect the transitions

in the test path. A transition may be affected by “Command Input

Parameters” and/or “State Fields” (in the guard). Limiting the search

space to only input fields that can potentially modify the “Command

Input Parameters” and “State Fields” is really useful.

Therefore, one need to do a backward dependency analysis to

identify influential autopilot settings and sensor inputs, to keep

for each target test case. In this study, using the domain expert

knowledge, we manually excluded the obvious irrelevant cases.
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However, there might be many more cases that could have been

excluded to further reduce the search space.

To improve the results, we tried to do a one-time static analysis

on the source code. A static analysis strategy that applies in such

scenario is called program slicing [29]. Static program slicing is

the extraction of a set of program statements (known as a slice)

that may affect the values at some point of interest based on a

slicing criterion. Since, the system under test is developed using C

language, we looked for existing program slicing tool for C/

The Wisconsin Program Slicing Tool [14] is a commercial tool

for slicing C programs. This tool is no longer being distributed and

have several limitations. For example, it does not support struct
typed identifiers, variable length parameter list, signals, and system

calls.

The Unravel [19] is an open-source program slicing tool for C

that runs under UNIX environment. As pointed by [18], this tool

does not support several recent extensions of C language such

as new , sizeo f and delete keywords, C templates and fixed-width

integers (e.g., int32_t , in64_t ).
Frama-C is an up-to-date program slicing tool for C language [16].

It provides a collection of plug-ins that perform static analysis, de-

ductive verification, and testing; and it has been previously applied

in safety critical software, as well. Frama-C is based on C Inter-

mediate Language(CIL) [22], which is a high-level representation

of C program and includes a set of tools to do easy analysis and

source-to-source transformation of a C program.

However, CIL is also unable to comprehend some extension of

C language that are widely used in our system under test. For

example, CIL does not recognize fixed-width integer types such

as int8_t , int16_t , int32_t , int64_t ,uint8_t , uint16_t ,uint32_t and
uint64_t . InMicroPilot autopilot, there is no generic integer type. In-
stead all integers are fixed-width integer types. The size of a generic

integer type (int ) depends on the memory and system architecture

but the size of a fixed-width integer is always fixed irrespective of

memory and architecture. Its not an issue in modern computers,

but in an embedded system memory architecture, it is particularly

important that a variable will always have the same predefined size.

Therefore employing Frama-C requires a lot of modifications in our

case.

In the future, we are planning to investigate more dependency

analysis approaches such as CodeSurfer [8] to automate this step.

Reducing execution time: In the simulator one hour of real

flight takes several minutes based on the computer configuration

and the hardware type of the UAV. In our case, we ran the simulator

on a highly configured development machine (Intel Corei7 CPU 3.40

GHz 16 GM RAM 64bit OS x64-based processor) where each test

execution would take about 500 seconds with a minimum amount

of flight plan (i.e., takeo f f and circuit ). The long flight simulation
is because before flying a UAV, the landing procedure needs to be

defined unless the flight commands are given from the Ground

Control System (GCS). This is true even in the case of simulation.

Such a time consuming execution imposes a great cost of fitness

evaluation in search-based testing.

To reduce test execution time we use a feature of simulator

that let us monitor what flight command has been executed in the

autopilot at a certain time. We use this opportunity and modify the

test code to stop the simulation whenever it finishes executing the

flight command of interest. Therefore, if for instance I am testing

the behavior of the takeo f f procedure, I do not need to wait for the
execution of the landing procedure. Applying this idea we managed

to reduce the average test execution time from 500 seconds to about

23 seconds, with a minimum amount of flight plan when testing

takeo f f flight command. Though 23 seconds is way better than
the original 500 seconds, it still is an expense that we would like to

reduce in future so that more expensive search algorithms can be

used for test generation.

5.5 Threats to the Validity

The main threat to the validity of this study is the limited sample

size (the specification model for only one flight command). We

are working with MicroPilot to build more specification models

for other flight aspects to be able to generalize our findings to the

entire autopilot system. However, the goal of this study is by no

mean over-generalizing the results to other systems and domains.

That requires replicating the study. However, we have provided

enough information about the details of our experiment so that

other researchers can replicate the study.

We have also implemented a fair amount of code to build the

MBT tool and generate test data. All these implementations are

subject to errors, which may affect the results.

Our search-based approach is very simple (due to the large

search-space and expensive test executions). This may underesti-

mate the effectiveness of MC/DC-based approach on code coverage

and fault detection, if a more advanced technique is afforded.

Our fault detection analysis is only based on the new faults,

however, a more general study would consider any faults (e.g.,

reintroducing historical defects, or mutation analysis). Our code

coverage analysis is also limited to the company’s current code

coverage tool. Therefore, we reported function coverage and all

C/D coverage and not e.g., statement , branch , or MC/DC coverage

criteria.

6 RELATEDWORK

Kicillof et al. [15] at Microsoft introduced a novel approach to

automate low-level test generation by combining model-based test-

ing with white-box parameterized unit testing. The authors uses

Pex [25], a symbolic execution tool, also developed at Microsoft,

to extract concrete parameter values to improve branch coverage

at the code-level. The parameter values are then fed back to the

model-based testing tool [24] which generates multiple test cases

for each methods with a high branch coverage.

Vishal et al. [27] studied a Constraint-Based Testing (CBT) ap-

proach to improve code coverage using SpecExplorer [24]. Con-

straint based testing is a promising technique in white-box testing

that uses constraint solvers to generate test data. SpecExplorer [24]

is a white-box model-based testing tool for C-Sharp that uses Z3

SMT Solver [9] to get decision tables. Z3 provides a decision ta-

ble that includes the code-level branches and appropriate input

data, generated by solving the code-level constraints that comes

from symbolic execution tool Pex [25]. The decision table is rich in

branch coverage, which in turn defines the data model to generate

test cases. However, the results show that their approach does not
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improve the code and decision coverage but it improves condition

and boundary coverage significantly.

Godboley et. al. [11] applied a program transformation technique

to improve the MC/DC coverage criterion. Typically Concolic ex-

ecution does not focus on MC/DC coverage, instead it focuses on

branch coverage. The authors’ idea is to transform conditional

structures with multiple conditions into nested conditional struc-

tures with single condition. So that, the Concolic execution can be

applied to generate test data covering all the branches of the code.

They used Quine-Mc-Mlusky technique to transform conditional

structures with multiple conditions to generate empty i f − else
statements and applied Concolic execution tool, CREST [7], to gen-

erate the test data.

Li et. al. [17] conducted an empirical experiment to show the

effectiveness of combinatorial testing to improve MC/DC criterion

of a test suite. In combinatorial testing, the interaction strength

represents the number of input parameters that are considered

for the combination. Typically, higher interaction strength often

leads to high MC/DC coverage. Higher the interaction strength, the

more expensive the test suite is. However, the experiment results

show that 5-way test sets are better than 4-way, 3-way, and 2-way

but not significantly better. A five-way test set achieves certain

MC/DC coverage more slowly than that of 4-way, 3-way, and 2-

way. On the other hand, 2-way test set are less expensive but they

are not effective to achieve high MC/DC coverage. The authors

recommended to use 4-way or 3-way test sets, in practice.

7 CONCLUSION AND FUTUREWORK

Safety-critical software systems such as UAV autopilots are overly

complex. Testing the behavior of an autopilot system plays a cru-

cial role in the system’s safety and obtaining airworthiness certi-

fications. Safety certifications, such as DO-178C [23], recommend

following a model-driven approach for testing high-level require-

ments of the system. The standard also demands targeting low-level

code coverage. In this study, we explored the possibility of improv-

ing Model-based Testing’s (MBT) low-level code coverage, through

replacing MBT’s default “all transition coverage” with a more de-

manding logic coverage (MC/DC) on the model constraint-level.

Our experiment on a representative state machine from our

industry collaborator’s autopilot software shows that the MC/DC-

based approach can significantly improve the code coverage. In

addition, the model-level MC/DC test suite detected three new

faults and two obsolete legacy code compared to the “all transition”

test suite.

In the future, we are planning to improve this approach by a

more-cost effective test generation technique. In particular, we are

working on reducing the search space by an automated depen-

dency analysis. Together with the company experts, we are also

preparing more specification models of different flight commands,

to generalize our findings to the entire autopilot system.
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Industrial Evaluation of Unit Test Generation: Finding Real Faults in a Finan-
cial Application. In Proceedings of the 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP ’17). 263–272.

[6] Bullseye Coverage [n. d.]. Bullseye Coverage. Bullseye Coverage Technology. ([n.
d.]). http://www.bullseye.com

[7] J. Burnim and K. Sen. 2008. Heuristics for Scalable Dynamic Test Generation. In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE ’08). 443–446.

[8] CodeSurfer Tool [n. d.]. ([n. d.]). https://www.grammatech.com
[9] L De Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of

the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. 337–340.

[10] G. Fraser and A. Arcuri. 2013. Whole test suite generation. IEEE Transactions on
Software Engineering 39, 2 (2013), 276–291.

[11] S. Godboley, G. S. Prashanth, D. P. Mohapatro, and B. Majhi. 2013. Increase in
Modified Condition/Decision Coverage using program code transformer. In 2013
3rd IEEE International Advance Computing Conference (IACC). 1400–1407.

[12] M. Harman and B. F. Jones. 2001. Search-based software engineering. Information
and Software Technology 43, 14 (2001), 833–839.

[13] H. Hemmati, A. Arcuri, and L. Briand. 2013. Achieving scalable model-based
testing through test case diversity. ACM Transactions on Software Engineering
and Methodology (TOSEM) 22, 1 (2013), 6.

[14] S. Horwitz, T. Reps, and D. Binkley. 1990. Interprocedural slicing using de-
pendence graphs. ACM Transactions on Programming Languages and Systems
(TOPLAS) 12, 1 (1990), 26–60.

[15] N. Kicillof, W. Grieskamp, N. Tillmann, and V. Braberman. 2007. Achieving Both
Model and Code Coverage with Automated Gray-box Testing. In Proceedings of
the 3rd International Workshop on Advances in Model-based Testing. 1–11.

[16] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. 2015.
Frama-C: A Software Analysis Perspective. Form. Asp. Comput. 27, 3 (May 2015),
573–609.

[17] D. Li, L. Hu, R. Gao, W. E. Wong, D. R. Kuhn, and R. N. Kacker. 2017. Improving
MC/DC and Fault Detection Strength Using Combinatorial Testing. In 2017 IEEE
International Conference on Software Quality, Reliability and Security Companion
(QRS-C). 297–303.

[18] J. R. Lyle and D. R. Wallace. 1997. Using the Unravel Program Slicing Tool to
Evaluate High Integrity Software. In In Proceedings of 10th International Software
Quality Week.

[19] J. R Lyle, D. R Wallace, J. R Graham, K. B Gallagher, J. P Poole, and D. W Binkley.
1995. Unravel: A case tool to assist evaluation of high integrity software volume
1: Requirements and design. National Institute of Standards and Technology,
Computer Systems Laboratory, Gaithersburg, MD 20899 (1995).

[20] Micropilot Inc. [n. d.]. Micropilot Inc.. ([n. d.]). http://micropilot.com
[21] S. Nair, J. L. De La Vara, M. Sabetzadeh, and L. Briand. 2014. An extended

systematic literature review on provision of evidence for safety certification.
Information and Software Technology 56, 7 (2014), 689–717.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. 2002. CIL: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Programs. In Proceedings
of the 11th International Conference on Compiler Construction (CC ’02). 213–228.

[23] 2011. DO-178c Software Considerations in Airborne Systems and Equipment
Certification. RTCA Inc. (2011).

[24] SpecExplorer [n. d.]. SpecExplorer. Microsoft Inc.. ([n. d.]). https://msdn.microsoft.
com/en-us/library/ee620411.aspx

[25] N. Tillmann and J. De Halleux. 2008. Pex: White Box Test Generation for .NET.
In Proceedings of the 2Nd International Conference on Tests and Proofs. 134–153.

[26] N. J. Tracey. 2000. A search-based automated test-data generation framework for
safety-critical software. Ph.D. Dissertation. Citeseer.

[27] V. Vishal, M. Kovacioglu, R. Kherazi, and M. R. Mousavi. 2012. Integrating
Model-Based and Constraint-Based Testing Using SpecExplorer. In IEEE 23rd
International Symposium on Software Reliability Engineering Workshops. 219–224.

[28] J. Wegener, A. Baresel, and H. Sthamer. 2001. Evolutionary test environment for
automatic structural testing. Information and Software Technology 43, 14 (2001),
841–854.

[29] M.Weiser. 1981. Program Slicing. In Proceedings of the 5th International Conference
on Software Engineering (ICSE ’81). 439–449.

265


