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Abstract—System-level manual acceptance testing is one of the
most expensive testing activities. In manual testing, typically, a
human tester is given an instruction to follow on the software.
The results as “passed” or “failed” will be recorded by the
tester, according to the instructions. Since this is a labour-
intensive task, any attempt in reducing the amount of this
type of expensive testing is essential, in practice. Unfortunately,
most of the existing heuristics for reducing test executions (e.g.,
test selection, prioritization, and reduction) are either based on
source code or specification of the software under test, which are
typically not being accessed during manual acceptance testing.

In this paper, we propose a test case failure prediction
approach for manual testing that can be used as a non-
code/specifcation-based heuristic for test selection, prioritization,
and reduction. The approach uses basic Information Retrieval
(IR) methods on the test case descriptions, written in natural
language. The IR-based measure is based on the frequency of
terms in the manual test scripts. We show that a simple linear
regression model using the extracted natural language/IR-based
feature together with a typical history-based feature (previous test
execution results) can accurately predict the test cases’ failure in
new releases. We have conducted an extensive empirical study
on manual test suites of 41 releases of Mozilla Firefox over three
projects (Mobile, Tablet, Desktop). Our comparison of several
proposed approaches for predicting failure shows that a) we can
accurately predict the test case failure and b) the NLP-based
feature can improve the prediction models.

Index Terms—NLP; POS; TF/IDF; Neural Network; Linear
Regression; Test Failure Prediction; Manual acceptance testing;

I. INTRODUCTION

Software testing is a time-consuming and costly activity in

the software development life cycle. Automation is a promis-

ing solution to decrease the cost of testing and increase the

quality of the testing process. Test automation can be applied

on several testing problems such as test data/case generation,

test prioritization, test execution, and test repair. Most of the

existing test automation techniques rely on metrics that are

extracted either from source code (e.g., code coverage [1]) or

specification models (e.g., UML state machines [2], [1]) of the

software under tests (SUT). However, a large body of testing in

practice is done manually. Such test cases are written in natural

languages. They describe a scenario to follow on the SUT. A

typical example of such manual testing is system acceptance

testing were the ready-to-ship features are being verified by

the manual testers.

Manual testing is specifically interesting, from the automa-

tion point of view, because it is one of the most expensive

type of testing that requires a human to judge the pass/fail

results for every single run of the test cases. This might be

still manageable for small systems with limited number of

manual test cases, but when the system size grows, running all

manual test cases for every feature change will not be possible

within the time limits. The time limitation becomes more

serious when the development team follows a rapid release

(continuous delivery) practice.

“Test case failure prediction” refers to approaches that

estimate the likelihood of a test case execution failure. These

predictions then can be used in deciding what portion of

existing test cases to run if we have a limited budget (test

selection). Or in which order should we run test cases to catch

defects sooner (test prioritization). Most of test prediction

research studies rely on various traditional software metrics,

on the code or specification-level, e.g., LOC, complexity, and

churn [3], [4]. However, in the context of manual acceptance

testing, typically, these artifacts are either not accessible or not

linkable to the manual test cases (e.g., a manual acceptance

test instruction is not easily traceable to the underling source

code elements). Therefore, in this work we are exploring

other measures for test case failure prediction that do not

require software’s source code or specification/requirement

documents.

One of the best measures that do not need any source code

or specification/requirement documents is historical execution

result of a test case. There are many studies [5], [6], specially

in the context of regression testing, which demonstrate that

the previous failure of a test case is a very good indicator of

its future failure. For example, history-based techniques have

been shown to outperform text analytics-based approaches for

prioritizing manual test cases, in the past [7], [8].

In this paper, we introduce a novel approach for manual test

case failure prediction, based on Natural Language Processing

(NLP), that improves accuracy of the traditional history-based

predictions. As discussed, the test cases in manual testing are

written in a natural language. Therefore, the objective of the

new metric is extracting some insights (features keywords)

from the test scripts. Using these feature vectors, as inputs of

prediction models, helps improving the accuracy of traditional
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history-based approaches, where each test case is represented

just by an ID (no feature is mined). Our proposed features are

mined using a simple NLP technique, called Part of Speech

Tagging (POS) [9], to extract keywords in test cases and then

weighting them using a Term Frequency Inverse Document

Frequency (TF-IDF) [10] metric.

We have conducted an extensive experiment with manual

test cases of Mozilla Firefox’s Desktop, Mobile, and Tablet

projects with 13, 14 and 14 releases, respectively. The results

show that our proposed NLP-based model leads to up to 24%
(on average 4%) higher accuracy compared to the baseline

(traditional history-based approach).

The contributions of this paper are as follows:

• Using an NLP technique (POS) to extract features to

represent manual test cases.

• Using an IR metric, TF-IDF, to build a prediction mea-

sure, based on the extracted features.

• Empirically investigating the effects of the NLP/IR-based

features, the historical data, and the prediction models on

the predictions accuracy.

• Conducting a large-scale empirical study on a real-word

software system with over 23,085 test cases and 2,457

real bugs.

The rest of this paper is organized as follows: Section II

describes the background in test case prediction, NLP and

IR methods, and prediction models; our proposed NLP-based

methods for test case prediction has been presented in Section

III. We have explained our experiments and results in Section

IV and finally, Section V concludes the paper and summarizes

our future work.

II. BACKGROUND AND RELATED WORK

In this section we cover backgrounds on test case prediction

including the basics of neural network, linear, and nonlinear

regression techniques. In addition, the NLP and IR methods

that are being used in this study will be explained here.

A. Test Case Prediction

There has been a lot of studies in recent year about defect

prediction. To predict a defect, one may use product (e.g.,

source code, test code), process, and organizational metrics,

using several mining software repositories approaches [3].

Testing-related metrics had been also successfully applied on

the defect prediction problem [11]. However, in this paper,

we are not interested in defect prediction and rather want to

predict the test case failure. The main difference is that we are

focusing on test case-related features as opposed to code-base

features (such as LOC, code complexity, and code change),

assuming that the code-base may not be available. Common

testing features include the size of a test case, code and

requirement coverage, and historical test case execution results

(pass and fail) [12]. Note that even though, our focus is on test

case failure prediction but most of the underlying techniques

and approaches are inspired by the defect prediction studies.

Test case prediction techniques can be studied from two

perspectives: a) what features or metrics it has access to

(available data) and b) what predictive model it uses for

estimating the test case failure?

1) Features in test case prediction: In general, any product,

process, or organizational feature that is used in defect pre-

diction can also be used in test case failure prediction. Below

we list some of the common features that have been used for

test case failure prediction in past.

a) Code coverage: In the test failure prediction domain,

code coverage is the common measure of quality for test cases.

For instance, different coverage-based approaches have been

used for test case prioritization. However, such approaches

assume that we have access to the code coverage information

of test cases, either from the previous executions of the test

case [6] or by static analysis [13]. In this study, we are focusing

on features that can be extracted only using the test cases in a

manual testing settings on the system level. Therefore, code-

based coverage info is not available.

b) Historical results: Another typical test case failure

prediction feature, in practice, is the previous execution results

per test case. The assumption here is that the historical results

of test case executions are recorded and accessible for the

prediction method. Test cases that have detected faults in the

past may be regarded as “proven performers” [14], hence

should be given more probability to fail again. Therefore,

a simple history-based metric would be whether a test case

has ever failed in the past or not. The positive answers will

be predicted as failing tests. This idea is typically used for

regression testing [5]. Most recently, Noor et.al. proposed

a history-based prioritization approach where the similarity

of modified or new test cases to old failing test cases have

been considered as input features for prediction [6], [12]. In

this study, we will use history-based features as baselines of

comparison.

c) Text-based features: Text-based features are a newly

introduced category that can work with even the most limited

datasets with no source code, coverage, or execution informa-

tion. Basically the only requirement is the textual representa-

tion of the test case (can be in programming/scripting/natural

languages) [15]. For instance, in [7], the authors have used a

topic modeling technique called LDA for representing manual

test cases. In this paper, we also introduce novel text-based

metrics.

d) GUI coverage: In the domian of event-driven systems

such as Web and mobile applications, modeling test cases

based on their sequence of events is a common approach in test

generation and prioritization. For instance, Bryce et. al. [16],

[17] used the notion of t-way event interaction [18] coverage as

a heuristic for test prioritization, where the goal is covering all

t-way event interactions, as soon as possible. In another work,

Sampath et. al. prioritize web applications’s test suites by test

lengths, frequency of appearance of request sequences (which

are the “events” in this context), and systematic coverage

of parameter-values and their interactions [19]. Since many

manual testing instructions are based on GUI menus, one

can potentially extract such event sequences from manual test

cases and use them as a prediction feature. However, we did
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Fig. 1. Overview of our approach

not use this approach in this study, because we did not want to

be limited to manual testing based on GUI menus. In addition,

we did not have access to the GUI of all previous versions of

the software under tests, in this study.

2) Test case prediction models: Classifiers such as Lin-

ear and Non-Linear regression (LR and NLR) and machine

learning models such as Neural Network (NN) and Support

Vector Machine (SVM) have been extensively used in bug

triage and prediction studies [20], [21], [22]. In this study, we

use the same insights and apply LR, NLR and NN, as the

most common techniques, to learn a classification model from

the extracted features per test case. We then use that model to

predict future test cases’ failures based on the current attribute

values.

a) Linear Regression: A linear regression (LR) method is

one of the most common approaches in statistics and it works

in application of numeric prediction especially where both

the output class and the features are numeric [23]. Basically,

the output class is expressed as a linear combination of the

attributes with their corresponding weights. The LR function

is given by:

y = b0 +
∑n

i=1
bixi (1)

where y is the output, xi is the input variable, bi is the

regression coefficient of explanatory variable i, and b0 is the

value of the intercept in the linear fitting.

b) Nonlinear Regression: The nature of the input data

versus the output may suggest there is a nonlinear relationship.

The simplest way to try to estimate such a relationship is

through a quadratic regression model which has been used in

this paper. While LR gives a clear analysis of the relationship

between output and each single input, quadratic regression

takes the interactions between input variables into account [5],

thereby, making it a better fit for nonlinear systems. Quadratic

regression is generated from LR by adding more terms to

equation 2. The quadratic regression function is:

y = b0+
∑n

i=1
bixi+

∑
1≤i≤n−1
i+1≤j<n

bijxixj+
∑n

i=1
biix

2
i (2)

with same definition as per equation 2.

c) Artificial Neural Networks: Artificial Neural Net-

works (ANNs) have been employed in many domains because

of their strength in classification and data pattern recognition.

ANNs can be defined as an interconnected group of simple

processing neurons, of which the functionality is based on

the human brain neurons [23]. The processing ability of the

network is stored in the weights of connected neurons that

are obtained and adjusted by a learning process from a set

of training patterns. A trained ANN is capable of classifying

non-linear and multidimensional input-output patterns.

A simple neuron receives signals from n inputs, each of

which has its own connection weights. The neuron subse-

quently evaluates the signals by adding the product of each

input and the connection weights associated and comparing

the summation to its threshold value. The vector calculated is

then converted using the transfer function F. Consequently, the

converted value is the output of the neuron.

B. Natural Language Processing

1) Overview: Natural Language Processing (NLP) tech-

niques, which can extract structured information from free

text, can be very useful in software automation when the

input data is text or speech. Parsing natural languages is one

of the most basic requirements for automating any system

that depends on the input from human in the form of text

or speech. Natural Language Processing (NLP) is a popular

topic in Computational Linguistic which deals with interfac-

ing computer with human languages. NLP specifically deals

with extracting context out of natural language text by using

grammar inference, relating the words with each other and

using this information to address natural language semantics

[24]. There are several sub-problems in NLP one of which is

POS tagging (assigning part of speech tags to words), which

is being used in this paper.

2) Part of Speech (POS) Tagging: Part-of-Speech (PoS)

tagging [25], [26] is the task of labeling each word in a

sentence with its appropriate syntactic category, called part of

speech. Part-of-speech (POS) taggers, identify POS of a word

and tag it as a noun, verb, preposition, etc. and then parse

the tagged words into grammatical phrases to help distinguish

the semantics of the component words. This technique is

a very important preprocessing task for almost all systems

with the input from human speech or text. POS tagging has

received great attention from software engineering researchers

developing text-based software engineering tools [27].

In the context of software engineering, NLP is not a new

topic and has been used for decades. Main applications of

NLP in software engineering are in the areas of Specification

Mining and Requirement Engineering. In 1989, Saeki et al.

[28] used NLP techniques to derive formal specifications

from informal ones using similar idea as presented in this

paper; extracting nouns and verbs as representations of classes,

attributes and methods in the code base. Hudaib et al. [2]

presented a two-way approach using NLP techniques; to
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extract UML state machines from English natural language

requirements, and then back from UML model to English

natural language requirements.

3) Term Frequency-Inverse Document Frequency (TF-IDF):
TF-IDF is a very common metric in the context of Text

Retrieval. It is a measure that is assigned to a term in a corpus

of documents. The first part, Term Frequency (TF), simply

uses the term’s frequency to record the number of times that

it appears in a document normalized by the total number of

terms in that document:

tf(t, d) =
count(t, d)∑
v∈d count(v, d)

(3)

IDF which is the second part of TF-IDF measures how rare

or common this term is across all documents in the corpus. It

is calculated by dividing the total number of documents (D)

by the number of documents that contain that term (df). IDF

is typically presented as the logarithmic version of the above

calculation.

idf(t) = log
|D|

|{df}| (4)

The TF-IDF of a term t is simply t’s tf multiplied by its inverse

document frequency.

tfidf(t, d) = tf(t, d) · idf(t) (5)

where,

tf is the term frequency.

df is the document frequency, i.e., the number of documents

containing the word.

D is the number of documents.

In this research, TF-IDF is used to measure the strength of

features extracted from POS tagging.

III. APPROACH

In this section, we explain our NLP-based approach for test

case failure prediction, as per Fig. 1, by first encoding the test

cases using the mined features and then applying the prediction

technique on the encoded test cases.

A. Test Case Encoding

A manual test case is typically a document that details the

sequence of actions that testers need to take and the outputs

they are expected to observe. A sample test case (only the

instructions, not the expected outputs) is shown in Table I

from Mozilla Firefox Mobile v16 (which also appears in v17,

v18 and v27). In the absence of code and specification, our

encoding’s objective is to represent each test case as a set

of keywords from the textual instruction. The keywords are

supposed to give insights about the software features under

test.

In this study, we use the set of nouns in the test instruction as

our representation. One reason behind choosing nouns is that

when manual test instructions refer to user interface elements,

including the menus and sub-menus and their states that all

need to be tested, they are all nouns. In addition, for cases

where the manual test instruction is not directly refers to the

user interfere, nouns can still provide a rich summary of the

instruction.

As an example, for the test case that is represented in

Table I the list of nouns are <fennec, portrait, mode, device,

landscape, mode, device, portrait, mode>. As it can be seen,

all nouns except fennec, which refers to the browser itself,

are valid estimations of either UI elements or concepts that

are being tested. Intuitively, we can guess that this estimation

approach has a very high recall, since when a test case verifies

a GUI element or a software feature, it’s very likely that the

test instruction directly uses the element’s or feature’s name, as

a noun. However, the precision of the heuristic is not clear and

there might be some noises in the nouns as well. Therefore,

one of the factors of the final results is the choice of heuristic.

To automatically exclude noises as much as possible, in

our experiment, we first preprocess all the test cases by

excluding all URLs, special characters and numbers; typical

preprocessing in standard text-mining [29]. Further, we split

words, based on camel case and underscore, remove stop

words, and stem multiple forms of the same word in one

form. We use the Stanford Maximum Entropy Tagger [9] to

extract nouns from the entire test suite. We ignore the sub-

classifications of nouns and keep only words that are tagged

as any sort of noun. Table II shows the tagging results for

the sample test case of Table I. Finally, each test case is

represented as a set of nouns that are identified by the POS

tagger.

B. NLP-based Prediction models

Our prediction models are LR, NLR and NN with two

features. The first feature is based on the traditional history-

based feature and the second feature is the “noun” coverage

of the test cases. To calculate the above features we follow

the following steps:

Step 1: Calculate the history-based measures

• Simple History (SH): Assign value ONE to the test cases

of this version if they passed in the immediate previous

version assign value ZERO to the previously failed or

new test cases.

• All History (AH): Assign the average of SH values in

all previous versions. This measure considers the entire

history rather than just the immediate version (SH).

• Weighted History (WH): Assign weighted average (as

opposed to simple average of AH measure) of SH values

in all previous versions with more importance on recent

versions (decremental weights when starting from the

newest release).

Step 2: Calculate the “noun” coverage measure

• Tag all words in all test cases using a POS tagger and

keep only the nouns.

• Represent each test case using its nouns. We call each of

these nouns as the unit of representations.

• Traverse the entire test suite to find unique units.

• Calculate TF-IDF of each unit per test case.
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TABLE I
A REAL TEST CASE FROM MOZILA FIREFOX MOBILE VERSION 16

Test Case ID:1206, Product: Mobile, Version:16

Steps to Perform
1. Launch fennec while in portrait mode.
2. Rotate the device to landscape mode.
3. Rotate the device back to portrait mode.

• Assign a measure to each test case which is the sum of

TF-IDF of all unit’s of the test case divided by the number

of units in that test case.

Note that the sum of TF-IDFs basically looks at the cov-

erage of the test as a whole without focusing on individual

units.

To have a more clear idea about the process of the TF-IDF

measure, let’s see a sample test suite. Assume we have four

test cases. The algorithm first tags all the test cases in a test

suite and represents the test cases in the form of vectors of

nouns, as below.

Test1 = <fennec, portrait,mode, device, landscape,

mode, device, portrait,mode>

Test2 = <news, article>

Test3 = <menu, settings, desktop, firefox, preferences,

code, fennec,matrix, desktop>

Test4 = <menu, settings, firefox>

We then traverse through the test cases and compute the TF-

IDF of all unique nouns per test case as in Table III. Next,

we calculate the sum of the TF-IDF for all the nouns in each

test case and then divide it by the number of nouns in that

test case. For example, feature vector and normalized TF-IDF

of the first test case described in Section III are as below:

Test1 = <fennec, portrait,mode, device, landscape,

mode, device, portrait,mode>

Test1 Normalized-TF-IDF:

(0.03+0.13+0.2+0.13+0.06+0.2+0.13+0.13+0.2)/(9+1)=0.121

Finally, we use LR, NLR and NN algorithms to predict

the PASS or FAIL for the test cases of each release using the

history-based and the TF-IDF measures, as explained. To train

our models, these two measures should be calculated for each

test case on a learning set (on all releases before the release

under study). For each test case in the learning set, we assign a

PASS or FAIL label, based on the actual test execution results

in that release. The trained model then will be used in the the

current release, to predict test failure using the current TF-IDF

and history-based measures, per test case.

In the next section, we will apply this approach on real-

world test suites.

TABLE II
REAL TAGGED TEST CASE FROM MOZILA FIREFOX MOBILE VERSION 16

Test Case ID:1206, Product: Mobile, Version:16

Tagged Steps
1. fennec/NN portrait/NN mode/NN.
2. device/NN landscape/NN mode/NN.
3. device/NN portrait/NN mode/NN.

TABLE III
NOUN TF-IDF FOR TEST 1

Noun TF-IDF
fennec 0.03
portrait 0.13
mode 0.2
device 0.13

landscape 0.06

TABLE IV
SYSTEMS UNDER TEST CHARACTERISTICS: MOZILLA FIREFOX DESKTOP

TRADITIONAL (TR) AND RAPID RELEASE (RR), MOBILE AND TABLET.

Type Release Date #Tests #Faults Failure rate

Desktop-TR

3.0 Dec-06 580 127 21.90%
3.5 Jul-07 766 138 18.02%
3.6 8/2009 828 88 10.63%
4.0 2/2010 997 150 15.05%

Desktop-RR

5.0 4/2011 1055 6 0.57%
6.0 4/2011 1119 4 0.36%
7.0 5/2011 1111 4 0.36%
8.0 7/2011 1119 7 0.63%
9.0 8/2011 1114 4 0.36%

10.0 9/2011 1108 12 1.08%
11.0 11/2011 1121 3 0.27%
12.0 12/2011 1121 2 0.18%
13.0 2/2012 1189 4 0.34%

Mobile

16 Jun-12 364 79 21.70%
17 Aug-12 367 72 19.62%
18 Aug-12 366 87 23.77%
19 Oct-12 388 76 19.59%
20 Nov-12 381 95 24.93%
21 Jan-13 389 72 18.51%
22 Feb-13 423 79 18.68%
23 Apr-13 426 76 17.84%
24 May-13 476 82 17.23%
25 Jul-13 514 83 16.15%
26 Aug-13 343 50 14.58%
27 Sep-13 434 84 19.35%
28 Nov-13 380 28 7.37%
29 Dec-13 293 21 7.17%

Tablet

16 Jul-12 368 77 20.92%
17 Aug-12 372 77 20.70%
18 Sep-12 377 98 25.99%
19 Oct-12 385 76 19.74%
20 Nov-12 391 62 15.86%
21 Jan-13 390 67 17.18%
22 Feb-13 396 74 18.69%
23 Apr-13 446 88 19.73%
24 May-13 448 42 9.38%
25 Jul-13 490 82 16.73%
26 Aug-13 333 50 15.06%
27 Sep-13 372 61 16.40%
28 Nov-13 345 39 11.30%
29 Dec-13 319 31 9.72%

IV. EMPIRICAL STUDY

In this section, we explain our evaluation of the proposed

test case prediction techniques, in the context of an experi-
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ment.

A. Experiment Design

1) Objective: The objective of this experiment is to eval-

uate the effectiveness of our proposed NLP-based test case

prediction techniques, in terms of prediction accuracy. The

goal is to improve the state-of-practice (traditional history-

based approach) for test case failure prediction.

2) Research Questions: We have formulated the objective

of this study as the following research questions:

RQ1: Can a basic NLP-based test case prediction
method improve the effectiveness of a traditional history-
based test case prediction method? In this research question,

we compare the prediction accuracy of our NLP-based Linear

Regression method with a simple history-based measure.

RQ2: Does looking at the entire history, when collecting
the history-based measure, improve the prediction accu-
racy? In this research question, we upgrade the simple history-

based measure (SH), which assumes the history only consists

of the last version, to use the entire history (all previous

versions). The two proposed new measures are All History

(AH) and Weighted History (WH). AH considers an equal

importance to the entire history but WH assigns more weight

to more recent versions. This research question is divided into

two sub-questions to evaluate SH, AH, and WH on the baseline

and Linear Regression approach, separately.

RQ3: Among basic prediction approaches which one
provides higher accuracy, when used with the NLP-based
features, for test case failure prediction? In this research

question, we investigate the effect of the prediction approach,

on test case failure prediction. We use three basic and simple

models for this comparison: Linear Regression (LR), Nonlin-

ear Regression (NLR), and Neural Network (NN).

3) Dataset: In this paper, we use a data set of 3 Mozilla

Firefox projects (Desktop, Mobile and Tablet). The data for

these projects are collected from two previously published

work on Mozilla Firefox’s manual test suites [7], [8]. The

Desktop test suites were collected from the test cases of

versions 5 to 13 of Firefox Desktop and their execution results.

This project was managed by a web-based system known as

Litmus. The Mobile and Tablet test suite are collected from

a test management tool called Moztrap. These are test cases

for versions 16 to 29 of Firefox Mobile and Tablet. Except in

the first four versions of Desktop, the rest of releases follow

rapid release strategy. The implication of that in our study is

that the releases are small with limited changes and failure

per release. There are also a lot of overlap in test suites of

consecutive versions.

Table IV shows the characteristic of the 13 (four traditional

and nine rapid) releases of Desktop Firefox, 14 releases of

Mobile Firefox and 14 releases of Tablet Firefox.

In both Litmus and Moztrap, there are records of each

test execution. Each test has been executed several times by

perhaps different testers. To assign a PASS or FAIL label to

test cases, we first exclude unsuccessful executions of tests

that are labeled as erroneous test, no PASS or no FAIL in the

test report. After this cleaning step, a test case is considered

as PASS only if all valid executions of the test, in that version,

were passed. Therefore, a test case is considered as FAILED

if there is at least one failed execution, assigned to that test

case, in that version. The test execution reports also identify

the bug id which let us identify unique faults and assign each

test case to the unique fault(s) that it can detect.

In our study, the results are reported starting from the third

version per project. This is due to the fact that each prediction

requires a training dataset (previous version) and the history

measures per test case in the training set themselves need at

least one release, as history. Thus the first version to predict

the result for will be the third release per project.

4) Comparison Baseline: Our baseline in this study is a

simple history-based method (called SimpleHistoryBaseLine

or SH-BL, from now on). Basically, we predict the test cases

that fail in the previous version to fail again and those that

passed previously to pass again. We also predict the new tests

(does not exist in the previous version) as fail, to give them

a chance to be executed, in the new release. Note that in our

dataset, percentages of new test cases from a given release to

the next one is typically very low (ranges from 0.3% to 13% in

Tablet – 1% to 13% in Mobile – 0.1% to 6% in Desktop Rapid

Release, but 12% to 29% in Desktop Traditional release). The

SH-BL prediction method is the foundation of many test case

prioritization approaches. Despite its simplicity this approach

works very well in regression testing, specially when the

releases are frequent (the changes are limited in each iteration).

Another technique that could be considered here as a

baseline of comparison was an alternative text mining-based

approach for extracting features from the textual test cases.

From the existing literature, the only such approach is an LDA-

based test failure prediction, which has shown poor results

compared to SH-BL [7], [8], [15]. Thus we do not consider

that as a baseline.

There are also some techniques which are based on GUI

coverage [17], [19] or image understanding from the GUI [30],

which could only be applicable if our dataset would include

GUI screen-shots and images per test cases for all versions

of the history. Therefore, we keep SH-BL as our baseline of

comparison .

5) Normalized-TF-IDF: To calculate the TF-IDF measure,

we divide the raw TF-IDFs by the sum of TF-IDFs of all

nouns to normalize the measure, and we call this measure

“Normalized-TF-IDF”, which will be used as one of the two

inputs to the prediction models. In addition, in order to avoid

a ”Division by zero” in test cases without any noun, we added

one to the size of the nouns.

6) Neural Network Set up: The NN we employed in this

study is a simple multi-layer perceptron with only 2 layers

containing 10 neurons in hidden layer. The network has 2

inputs, each for (Normalized-TF-IDF, History) and one output

for pass or failing result. We used the logistic function as the

activation function inside the neurons with backpropagation as

the learning mechanism. Note that the NN model is designed

to be simple and cheap, so that it is comparable with LR and
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TABLE V
ACCURACY OF TWELVE FAULT PREDICTION TECHNIQUES IN THE DESKTOP, MOBILE AND TABLET FIREFOX – BL(BASELINE), LR(LINEAR

REGRESSION), NLR(NONLINEAR REGRESSION), NN(NEURAL NETWORK), SH(SIMPLE HISTORY), AH(ALL HISTORY), WH(WEIGHTED HISTORY).
FOR NN AVERAGE(AVG) AND STANDARD DEVIATION(SD) OF 10 RUNS ARE REPORTED.

Type Version
BL LR NLR NN

SH AH WH SH AH WH SH AH WH
SH AH WH

AVG SD AVG SD AVG SD

Desktop (TR)
3.6 0.51 0.39 0.60 0.63 0.47 0.63 0.63 0.48 0.63 0.63 0.08 0.61 0.06 0.58 0.00
4.0 0.45 0.54 0.50 0.69 0.67 0.66 0.69 0.67 0.67 0.68 0.00 0.64 0.01 0.66 0.00

Desktop (RR)

7.0 0.79 0.81 0.80 0.89 0.79 0.79 0.79 0.79 0.79 0.79 0.01 0.78 0.01 0.79 0.00
8.0 0.87 0.86 0.86 0.88 0.87 0.88 0.88 0.87 0.88 0.88 0.01 0.86 0.00 0.87 0.00
9.0 0.90 0.85 0.84 0.85 0.85 0.85 0.91 0.85 0.85 0.91 0.01 0.86 0.02 0.85 0.02

10.0 0.85 0.86 0.85 0.87 0.85 0.85 0.86 0.85 0.85 0.86 0.01 0.85 0.00 0.85 0.00
11.0 0.90 0.91 0.91 0.94 0.90 0.91 0.91 0.90 0.90 0.91 0.01 0.90 0.00 0.90 0.01
12.0 0.91 0.91 0.91 0.89 0.91 0.91 0.91 0.91 0.91 0.91 0.01 0.91 0.00 0.91 0.00
13.0 0.85 0.88 0.85 0.94 0.88 0.88 0.88 0.88 0.88 0.88 0.01 0.88 0.01 0.89 0.00

Mobile

18 0.83 0.74 0.83 0.80 0.83 0.83 0.80 0.82 0.82 0.81 0.01 0.81 0.02 0.83 0.02
19 0.82 0.81 0.77 0.86 0.85 0.85 0.86 0.86 0.86 0.80 0.05 0.84 0.05 0.85 0.01
20 0.85 0.76 0.83 0.82 0.83 0.84 0.83 0.82 0.84 0.83 0.01 0.84 0.00 0.85 0.00
21 0.85 0.80 0.85 0.86 0.87 0.88 0.86 0.87 0.87 0.86 0.01 0.86 0.01 0.88 0.00
22 0.87 0.75 0.83 0.86 0.86 0.86 0.86 0.86 0.88 0.87 0.01 0.87 0.00 0.87 0.00
23 0.78 0.73 0.77 0.82 0.88 0.85 0.83 0.85 0.85 0.84 0.01 0.86 0.01 0.85 0.01
24 0.80 0.69 0.76 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.02 0.88 0.00 0.87 0.00
25 0.83 0.65 0.71 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.01 0.88 0.00 0.88 0.00
26 0.82 0.61 0.68 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.03 0.94 0.01 0.93 0.01
27 0.90 0.68 0.74 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.01 0.90 0.00 0.91 0.00
28 0.91 0.63 0.77 0.96 0.97 0.97 0.96 0.97 0.97 0.93 0.01 0.96 0.00 0.96 0.00
29 0.94 0.65 0.82 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.01 0.97 0.00 0.97 0.00

Tablet

18 0.88 0.83 0.88 0.88 0.89 0.89 0.88 0.89 0.89 0.88 0.01 0.87 0.01 0.88 0.01
19 0.78 0.81 0.76 0.79 0.81 0.82 0.79 0.82 0.82 0.79 0.05 0.81 0.03 0.81 0.03
20 0.88 0.77 0.80 0.89 0.89 0.89 0.89 0.89 0.89 0.88 0.01 0.86 0.01 0.85 0.01
21 0.91 0.83 0.79 0.90 0.88 0.88 0.90 0.90 0.91 0.90 0.01 0.90 0.01 0.91 0.01
22 0.85 0.75 0.85 0.85 0.84 0.84 0.85 0.84 0.85 0.85 0.01 0.84 0.02 0.85 0.02
23 0.79 0.74 0.76 0.87 0.87 0.87 0.86 0.87 0.87 0.86 0.01 0.85 0.01 0.85 0.00
24 0.81 0.66 0.71 0.94 0.94 0.94 0.93 0.94 0.94 0.93 0.02 0.92 0.01 0.92 0.01
25 0.86 0.65 0.71 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.01 0.89 0.00 0.89 0.00
26 0.83 0.61 0.67 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.02 0.94 0.01 0.94 0.00
27 0.92 0.64 0.74 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.01 0.93 0.00 0.93 0.00
28 0.93 0.62 0.81 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.01 0.95 0.00 0.95 0.00
29 0.96 0.66 0.86 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.01 0.96 0.00 0.96 0.00

NLR. Therefore, tuning NN or using higher levels of hidden

layers were not an objective of this study.

7) Evaluation Metric: In this study, accuracy of the pre-

dictions are used to evaluate the techniques (our proposed

approaches and the baseline) over different releases. The

accuracy metric is defined as 6:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where,

TP True Positive

TN True Negative

FP False Positive

FN False Negative.

To compare the accuracy values of the baseline and the

proposed approaches, we apply a non-parametric significant

test, a matched pair Wilcoxons signed rank test [31], to

determine if the difference between the accuracy results are

statistically significant or not. After applying the test on the

predicted output results, a p-value has been calculated over the

releases of Desktop, Mobile, and Tablet projects, separately.

The p-value threshold is set to 0.05. Note that in the case of

NN, which is a randomized technique, we repeat each run 10

times and report the mean values. The significant test is then

applied in the mean values over different releases, for each

approach.

B. Case study results

In this section, we explain and discuss the results of the

experiment and answer our research questions.

1) RQ1:: To answer this research question, we compare the

simple history-based baseline method (SH-BL) with the Linear

Regression as a standard statistical technique for classification,

which uses both history-based metric and Normalized-TF-

IDF. The idea is to see the effect of NLP without giving

much advantages to the technique by using an advanced

prediction model. Note that we can not use the baseline

directly (i.e. witout a prediction method) with the NLP-based

encoding, thus SH-LR, in this paper, is the simplest NLP-based

prediction approach.

Looking at Fig. 2, our first observation is that overall the

accuracies are high for both techniques. This shows that the

history-based approach is quite effective in these releases

(mostly rapid releases). However, the SH-LR shows even
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Fig. 2. Accuracy of Firefox Versions; Simple History Baseline (SH Baseline) vs Simple History Linear Regression (SH LR).
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Fig. 3. Accuracy of Baseline (BL) based on History features; Simple History (SH), All History (AH) and Weighted History (WH).

higher accuracy. We can see accuracy improvements up to

24% (e.g., for version 4.0 Firefox Desktop). In addition, the

low p-values reported in Table VI , 0.0004, show that the

improvements are not by chance.

Another observation is that given that in many versions SH-

BL already provides high accuracies, the average improve-

ments provided by SH-LR are not that high (on average 3%,

3%, and 6% improvements, on Tablet, Mobile, and Desktop

projects, respectively). However, the maximum improvements

are more considerable: up to 12% (in version 24), 12% (in

version 26), and 24% (in version 4) in Tablet, Mobile, and

Desktop projects, respectively. It also worth mentioning that

SH-BL outperforms SH-LR only in 6 cases out of 33 releases.

Therefore, the answer to our RQ1 is Yes! we can improve

the basic history-based test case prediction using a simple

NLP-base LR test case prediction model, even when it has

already a high accuracy. This is quite interesting since it

shows that the mined textual data brings extra knowledge

that was not in the execution history. This knowledge is

basically the coverage information which can not be seen in

the history metric. However, the history measure that was used

in RQ1 was quite naive and simple. So the next question

will be whether a more complex history measure can help

in prediction or not, which is studied in RQ2.

2) RQ2:: The objective of RQ2 is to study the history-

based measure in more details. In RQ2.1, we want to know

whether SH-BL can be improved if we consider the entire

history rather than only previous venison, or not. This basically

tries to improve the baseline without using the NLP-based

feature. In RQ2.2, we study the same question but in the

context of our NLP-based LR method. In other words, we

try to improve the SH-LR by a better history-based feature.

To answer RQ2.1 and 2.2, we replace SH with AH and WH,

as defined in Section III-B. Fig. 3 and 4 show the accuracy

achieved by the baseline and LR models using the different

historical attributes. Focusing on RQ2.1, (Fig. 3) shows that

while all three modifications of history are almost the same in

Desktop versions, Simple History works the best on Mobile

and Tablet, meaning that the most significant information, in

terms of simple baseline method, is in the last version and then

in the more recent versions, explaining why Weighted History

is outperforming All History. Note that the reason behind poor

performance of SH in the first versions of Desktop is that those

versions do not follow rapid release and each version lasts for

almost a year. Therefore, the previous version’s test execution

results are outdated.

Looking at Fig. 4 to answer RQ2.2, we see that all three

modifications of history-based features, in the context of
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TABLE VI
P-VALUE OF BASELINE AND MODELING TECHNIQUES

Method
BL LR NLR NN

SH AH WH SH AH WH SH AH WH SH AH WH

BL
SH 1.0000 0.0000 0.0003 0.0004 0.0025 0.0002 0.0001 0.0019 0.0000 0.0002 0.0049 0.0000
AH 0.0000 1.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WH 0.0003 0.0004 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LR
SH 0.0004 0.0000 0.0000 1.0000 0.2627 0.6389 0.4074 0.4781 0.5034 0.0811 0.0589 0.3498
AH 0.0025 0.0000 0.0000 0.2627 1.0000 0.0627 0.5633 0.4080 0.0099 0.5698 0.0641 0.7935
WH 0.0002 0.0000 0.0000 0.6389 0.0627 1.0000 0.4237 0.3061 0.0424 0.0656 0.0028 0.4106

NLR
SH 0.0001 0.0000 0.0000 0.4074 0.5633 0.4237 1.0000 0.8484 0.0363 0.0687 0.0261 0.5372
AH 0.0019 0.0000 0.0000 0.4781 0.4080 0.3061 0.8484 1.0000 0.0010 0.5178 0.0548 0.8370
WH 0.0000 0.0000 0.0000 0.5034 0.0099 0.0424 0.0363 0.0010 1.0000 0.0032 0.0001 0.0589

NN
SH 0.0002 0.0000 0.0000 0.0811 0.5698 0.0656 0.0687 0.5178 0.0032 1.0000 0.3595 0.4774
AH 0.0049 0.0000 0.0000 0.0589 0.0641 0.0028 0.0261 0.0548 0.0001 0.3595 1.0000 0.0342
WH 0.0000 0.0000 0.0000 0.3498 0.7935 0.4106 0.5372 0.8370 0.0589 0.4774 0.0342 1.0000
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Fig. 4. Accuracy of Linear Regression (LR) based on History features; Simple History (SH), All History (AH) and Weighted History (WH).
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Fig. 5. Accuracy of different learning methods; SH-LR, SH-NLR and SH-NN.

the NLP-based LR model, have the same level of accuracy,

indicating that expanding history from one version to all

previous versions, does not influence the learning accuracy

of the NLP-based model. The above conclusion can also be

drawn by looking at high p-values between SH-LR with WH-

LR and AH-LR which are 0.63 and 0.26.

Therefore, given that the cost of collecting AH and WH

features are higher than SH and they do not provide better ac-

curacies, in most cases, our answer to RQ2 is: NO! Looking at

the richer history does not improve the prediction accuracies,

at least when using BL or LR, as the prediction model. Now

the follow up question is whether improving the prediction

model helps in improving the accuracy or not, which is studied

in RQ3.

3) RQ3:: In this RQ, we focus on the learning side of

the approach. So we keep the SH-LR as our default history

measure and replace LR with NLR and NN models.

Fig. 5 compares these three techniques, in terms of accuracy.

As a general observation, we can see that replacing the

learning algorithm does not provide any significant changes
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compared to SH-LR, which means that the output of the

model, i.e., the failure of the test cases, can be learned without

a complex model as well. Table V shows the results for all

12 combinations of the three history-based features and four

prediction methods. The conclusions drawn from those parts

of the table that are related to Fig. 5 is that replacing LR with

an NLR or NN-based approaches does not help improving

the accuracies of the predictions. This is also clear from the

p-value results in Table VI, where comparing SH-LR with

none of the *-NLR and *-NN approaches result in lower than

threshold p-values.

Given that the more complex prediction models also come

with more cost and tuning needs, our conclusion is that extract-

ing keywords of the features under test from the textual data

in test cases is possible through a simple NLP-based approach

(POS+TF-IDF). This representation combined with a basic

history-based measure (historical test execution results from

previous release) can potentially provide a highly accurate

test case failure prediction approach, using a linear regression

classifier.

V. CONCLUSION AND FUTURE WORK

Manual testing is an expensive and tedious software testing

activity, which is essential for getting users perspective on the

released features. In this paper, we proposed an NLP-based

approach (POS) for extracting nouns from textual data of test

cases (manual test instructions) to represent each test case. We

then proposed an IR-based measure (TF-IDF) to be assigned to

each test case. Finally, we used three different prediction mod-

els to predict failure of test cases using this measure and three

different variations of history-based measures, separately. Our

results based on an empirical study of 41 releases of Mozilla

Firefox’s manual test suites showed that a simple history-based

feature (only previous release data) combined with POS/TF-

IDF data in a linear regression model can accurately predict

test cases’ failure in new releases. In addition, the NLP-based

approach can provide even more improvement on the accuracy

of predictions by the baseline approach (only using history).

To the best of our knowledge, this work is the first use of NLP

on manual test case scripts for test failure prediction and has

shown promising results, which we are planning to replicate on

different systems and expand on different NLP-based features

to more accurately extract features keywords from test cases.
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